xanthohumol and Iron-Overload

xanthohumol has been researched along with Iron-Overload* in 2 studies

Other Studies

2 other study(ies) available for xanthohumol and Iron-Overload

ArticleYear
Humulus lupulus L. extract and its active constituent xanthohumol attenuate oxidative stress and nerve injury induced by iron overload via activating AKT/GSK3β and Nrf2/NQO1 pathways.
    Journal of natural medicines, 2023, Volume: 77, Issue:1

    Hops, the dried female clusters from Humulus lupulus L., have traditionally been used as folk medicines for treating insomnia, neuralgia, and menopausal disorders. However, its pharmacological action on iron overload induced nerve damage has not been investigated. This study aims to evaluate the protective effects of hops extract (HLE) and its active constituent xanthohumol (XAN) on nerve injury induced by iron overload in vivo and in vitro, and to explore its underlying mechanism. The results showed that HLE and XAN significantly improved the memory impairment of iron overload mice, mainly manifested as shortened latency time, increased crossing platform times and spontaneous alternation ratio, and increased the expression of related proteins. Additionally, HLE and XAN significantly increased superoxide dismutase (SOD) and glutathione peroxidase (GSH-PX) activities, and remarkably decreased malondialdehyde (MDA) level in hippocampus. Also, HLE and XAN apparently reduced reactive oxygen species (ROS) content of PC12 cells induced by iron dextran (ID), and improved the oxidative stress level. Moreover, HLE and XAN significantly upregulated the expression of nuclear factor E2-related factor (Nrf2), NAD(P)H quinone oxidoreductase (NQO1), heme oxygenase-1 (HO-1), SOD, phosphorylated AKT (p-AKT), and phosphorylated GSK3β (p-GSK3β) both in hippocampus and PC12 cells. These findings demonstrated the protective effect of HLE and XAN against iron-induced memory impairment, which is attributed to its antioxidant profile by activation of AKT/GSK3β and Nrf2/NQO1 pathways. Also, it was suggested that hops could be a potential candidate for iron overload-related neurological diseases treatment.

    Topics: Animals; Antioxidants; Female; Glycogen Synthase Kinase 3 beta; Heme Oxygenase-1; Humulus; Iron; Iron Overload; Mice; NAD(P)H Dehydrogenase (Quinone); NF-E2-Related Factor 2; Oxidative Stress; Proto-Oncogene Proteins c-akt; Rats; Reactive Oxygen Species; Superoxide Dismutase

2023
Hops extract and xanthohumol ameliorate bone loss induced by iron overload via activating Akt/GSK3β/Nrf2 pathway.
    Journal of bone and mineral metabolism, 2022, Volume: 40, Issue:3

    Osteoporosis is closely related to iron metabolism. This study aimed to investigate whether hops extract (HLE) and its active component xanthohumol (XAN) could ameliorate bone loss caused by iron overload, and explored its potential mechanism.. Iron overload mice induced by iron dextran (ID) were used in vivo, and were treated with HLE and XAN for 3 months. Bone micro-structure and bone morphology parameters were determined by Micro-CT and TRAP staining. Bone metabolism markers and oxidation indexes in serum and bone tissue were evaluated. For in vitro experiment, bone formation indexes were determined. Moreover, the expression of key proteins in protein kinase B (Akt)/glycogen synthetase kinase 3β (GSK3β)/nuclear factor E2-related (Nrf2) pathway was evaluated by Western blotting.. HLE and XAN effectively improved the bone micro-structure of the femur in mice, altered bone metabolism biomarkers, and regulated the expression of proteins related to bone metabolism. Additionally, they significantly promoted cell proliferation, runt-related gene 2 (Runx2) expression, and increased ALP activity in ID-induced osteoblasts. Moreover, HLE and XAN markedly inhibited the increase of oxidative stress caused by iron overload in vivo and in vitro. Further studies showed that they significantly up-regulated the expression of p-Akt, p-GSK3β, nuclear-Nrf2, NAD(P)H: quinone oxidoreductase 1 (NQO1), and heme oxygenase-1 (HO-1) in ID-induced osteoblasts.. These findings indicated hops and xanthohumol could ameliorate bone loss induced by iron overload via activating Akt/GSK3β/Nrf2 pathway, which brought up a novel sight for senile osteoporosis therapy.

    Topics: Animals; Flavonoids; Glycogen Synthase Kinase 3 beta; Heme Oxygenase-1; Humulus; Iron; Iron Overload; Mice; NF-E2-Related Factor 2; Oxidative Stress; Plant Extracts; Propiophenones; Proto-Oncogene Proteins c-akt; Signal Transduction

2022