xanthoangelol and Liver-Neoplasms

xanthoangelol has been researched along with Liver-Neoplasms* in 3 studies

Other Studies

3 other study(ies) available for xanthoangelol and Liver-Neoplasms

ArticleYear
Endoplasmic reticulum stress triggers Xanthoangelol-induced protective autophagy via activation of JNK/c-Jun Axis in hepatocellular carcinoma.
    Journal of experimental & clinical cancer research : CR, 2019, Jan-08, Volume: 38, Issue:1

    Xanthoangelol (XAG) was reported to exhibit antitumor properties in several cancer. However, the specific anti-tumor activity of XAG in human hepatocellular carcinoma (HCC) and the relevant mechanisms are not known.. The effects of XAG on HCC cell proliferation and apoptosis were respectively examined by CCK-8 assay and Annexin V-FITC/PI apoptosis kit. Western blotting was conducted to detect the expression of proteins. The effect of XAG on the development of acidic vesicle organelles was assessed using acridine orange staining. mRFP-GFP-LC3 adenovirus was used to transfect HCC cells and the formation of autolysosome was detected using a confocal microscope.. Mechanistically, XAG promotes HCC cell death through triggering intrinsic apoptosis pathway, not extrinsic apoptotic pathway. Furthermore, XAG treatment induced autophagy in Bel 7402 and SMMC 7721 cells, as evidenced by an increase in autophagy-associated proteins, including LC3B-II, Beclin-1, and Atg5. Interestingly, inhibition of autophagy with 3-MA, Bafilomycin A1 (Baf A1), or siRNA targeting Atg5 effectively enhanced the apoptotic cell ratio in XAG-treated cells, indicating that protective effect of autophagy induced by XAG in HCC. Moreover, autophagy induced by XAG was mediated by activating endoplasmic reticulum stress (ERS), along with administration of XAG, the expression levels of ERS-associated proteins, including CHOP, GRP78, ATF6, p-eIF2α, IRE1α, and cleaved caspase-12 were significantly increased in HCC cells. Meanwhile, suppressing ERS with chemical chaperones (TUDCA) or CHOP shRNA could effectively abrogate the autophagy-inducing effect of XAG, and increase the apoptotic cell death. Further mechanistic studies showed that ERS-induced autophagy in XAG-treated cells was mediated by activation of JNK/c-jun pathway. XAG treatment resulted in the increase of p-JNK and p-c-jun, while suppressing ERS with TUDCA or CHOP shRNA could effectively reverse it. Meanwhile, SP600125, a JNK inhibitor, effectively reversed XAG-induced protective autophagy and enhanced cell apoptosis in XAG-treated HCC cells. In vivo results demonstrated that XAG exerts potent antitumor properties with low toxicity.. Collectively, these results suggested that XAG could be served as a promising candidate for the treatment and prevention of HCC.

    Topics: Animals; Apoptosis; Autophagy; Carcinoma, Hepatocellular; Cell Proliferation; Chalcone; Endoplasmic Reticulum Chaperone BiP; Endoplasmic Reticulum Stress; Humans; Liver Neoplasms; Male; MAP Kinase Signaling System; Mice; Mice, Nude; Proton Pump Inhibitors

2019
Autophagy induction by xanthoangelol exhibits anti-metastatic activities in hepatocellular carcinoma.
    Cell biochemistry and function, 2019, Volume: 37, Issue:3

    Xanthoangelol (XAG), a prenylated chalcone isolated from the Japanese herb Angelica keiskei Koidzumi, has been reported to exhibit antineoplastic properties. However, the specific anti-tumor activity of XAG in human hepatocellular carcinoma (HCC), and the relevant mechanisms are not known. Herein, we evaluated the effect of XAG against HCC in vitro and in vivo. Although XAG treatment did not significantly reduce the viability of the Hep3B and Huh7 cell lines, it suppressed cell migration, invasion, and EMT. This anti-metastatic effect of XAG was due to induction of autophagy, because treatment with the autophagy inhibitor 3-methyadenine (3-MA) or knockdown of the pro-autophagy Beclin-1 effectively abrogated the XAG-induced suppression of metastasis. Mechanistically, XAG induced autophagy via activation of the AMPK/mTOR signaling pathway, and XAG treatment dramatically increased the expression of p-AMPK while decreasing p-mTOR expression. In addition, blocking AMPK/mTOR axis with compound C abrogated the autophagy-mediated inhibition of metastasis. The murine model of HCC metastasis also showed that XAG effectively reduced the number of metastatic pulmonary nodules. Taken together, our results revealed that autophagy via the activation of AMPK/mTOR pathway is essential for the anti-metastatic effect of XAG against HCC. These findings not only contribute to our understanding of the anti-tumor activity of XAG but also provide a basis for its clinical application in HCC. Before this study, evidence of XAG on HCC was purely anecdotal; present study provides the first comprehensive assessments of XAG on HCC metastasis and investigates its underlying mechanism. Results suggest that XAG exerts anti-metastatic properties against HCC through inducing autophagy which is mediated by the activation of AMPK/mTOR signaling pathway. This research extends our knowledge about the antineoplastic properties of XAG and suggests that induction autophagy may represent future treatment strategies for metastatic HCC.

    Topics: Angelica; Antineoplastic Agents, Phytogenic; Autophagy; Carcinoma, Hepatocellular; Cell Movement; Cell Proliferation; Chalcone; Dose-Response Relationship, Drug; Drug Screening Assays, Antitumor; Humans; Liver Neoplasms; Neoplasm Metastasis; Structure-Activity Relationship; Tumor Cells, Cultured

2019
Antitumor and antimetastatic activities of Angelica keiskei roots, part 1: Isolation of an active substance, xanthoangelol.
    International journal of cancer, 2003, Sep-01, Volume: 106, Issue:3

    The roots of Angelica keiskei Koizumi have traditionally been used as a health food, with diuretic, laxative, analeptic and galactagogic effects. It has been thought that the roots and leaves of A. keiskei have preventive effects against coronary heart disease, hypertension and cancer. In the present study, we examined the antitumor and antimetastatic activities of various fractions isolated from a 50% ethanol extract of A. keiskei roots. The ethyl acetate-soluble fraction of the 50% ethanol extract inhibited tumor growth in LLC-bearing mice at a daily dose of 100 mg/kg prolonged survival time and inhibited metastasis to the lung after surgical removal of primary tumors. Two active substances were isolated from fractions 1 and 2: compound 1 was identified as xanthoangelol based on the data of the (1)H- and (13)C-NMR spectra. Xanthoangelol inhibited tumor growth in LLC-bearing mice as well as lung metastasis and prolonged survival time in carcinectomized mice at a daily dose of 50 mg per kg. Furthermore, xanthoangelol (50 or 100 mg per kg daily) inhibited liver metastasis and the growth of metastasized tumor cells in the livers of mice with intrasplenically implanted LLC. Xanthoangelol inhibited DNA synthesis in LLC cells at concentrations of 10 and 100 microM, but it had no effect on DNA synthesis in HUVECs or on the adherence of LLC cells to HUVECs. Xanthoangelol inhibited tumor-induced neovascularization (in vivo) at doses of 10 and 20 mg per kg, and it inhibited the Matrigel-induced formation of capillary-like tubes by HUVECs at concentrations of 1-100 microM. Furthermore, xanthoangelol inhibited the binding of VEGF to HUVECs at concentrations of 1-100 microM. These results indicate that the antitumor and/or antimetastatic activities of xanthoangelol may be due to inhibition of DNA synthesis in LLC cells and of tumor-induced neovascularization through inhibition of the formation of capillary-like tubes by vascular endothelial cells and inhibition of the binding of VEGF to vascular endothelial cells.

    Topics: Acetates; Angelica; Animals; Antineoplastic Agents; Carcinoma, Lewis Lung; Cell Adhesion; Cell Division; Chalcone; DNA Replication; DNA, Neoplasm; Endothelial Growth Factors; Endothelium, Vascular; Ethanol; Female; Fibrinolysin; Intercellular Signaling Peptides and Proteins; Liver Neoplasms; Lung Neoplasms; Lymphokines; Mice; Mice, Inbred C57BL; Molecular Structure; Plant Roots; Survival Rate; Vascular Endothelial Growth Factor A; Vascular Endothelial Growth Factors

2003