wr-243251 has been researched along with Malaria--Falciparum* in 2 studies
2 other study(ies) available for wr-243251 and Malaria--Falciparum
Article | Year |
---|---|
Short report: floxacrine analog WR 243251 inhibits hematin polymerization.
Floxacrine was a promising antimalarial compound that led to the identification of WR 243251. On the basis of their structures, we suspected that these compounds might be good inhibitors of hematin polymerization. Indeed, WR 243251 was as potent and floxacrine was only 2-fold less potent than chloroquine as inhibitors of this process. However, this hematin polymerization inhibition did not completely account for the increased antimalarial potency of WR 243251 versus chloroquine. The WR 243251 ketone hydrolysis product WR 243246 was without activity against hematin polymerization. These data also confirm that hematin polymerization inhibition can be quite sensitive to small changes in inhibitor structure. Topics: Acridines; Animals; Antimalarials; Hemin; Malaria, Falciparum; Plasmodium falciparum | 2001 |
Antimalarial activity of WR 243251, a Dihydroacridinedione.
WR 243251 is a dihydroacridinedione that was evaluated for antimalarial blood schizonticidal activity in vitro and in vivo. The in vitro doses calculated to kill 50% of organisms were 11 nM for a chloroquine-susceptible, mefloquine-resistant standard strain and 25 nM for a chloroquine- and pyrimethamine-resistant standard strain. The total dose needed to cure 100% of mice infected with a drug-susceptible strain of Plasmodium berghei was 12 to 20 mg/kg of body weight for both oral and subcutaneous administration. The regimen needed to cure 100% of Aotus monkeys infected with Plasmodium falciparum was 8 mg/kg/day for 3 days (chloroquine-susceptible strain) and 16 mg/kg/day for 3 days (chloroquine-resistant strain). The 100% curative doses for Aotus monkeys did not increase for parasites previously exposed to subcurative doses. The absolute value of the curative doses of WR 243251 was comparable to or lower than the values for clinical antimalarial agents. The high absolute activity, comparability of activities against susceptible and resistant parasites, and inability to induce resistance by exposure to subcurative doses suggest that WR 243251 has strong potential as a blood schizonticidal agent. Topics: Acridines; Animals; Antimalarials; Aotus trivirgatus; Drug Resistance; Malaria, Falciparum; Mice; Plasmodium falciparum | 1994 |