wogonin and Carcinoma--Non-Small-Cell-Lung

wogonin has been researched along with Carcinoma--Non-Small-Cell-Lung* in 5 studies

Other Studies

5 other study(ies) available for wogonin and Carcinoma--Non-Small-Cell-Lung

ArticleYear
Scutellaria Flavonoids Effectively Inhibit the Malignant Phenotypes of Non-small Cell Lung Cancer in an Id1-dependent Manner.
    International journal of biological sciences, 2019, Volume: 15, Issue:7

    Non-small cell lung cancer (NSCLC) is the leading cause of cancer death in the world. Inhibitor of differentiation 1 (Id1) is overexpressed in NSCLC and involved in promoting its progression and metastasis. Identifying natural compounds targeting Id1 may have utility in NSCLC treatment. Here, we sought to determine whether the anti-tumor activities of

    Topics: A549 Cells; alpha7 Nicotinic Acetylcholine Receptor; Animals; Antineoplastic Agents; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cell Movement; Cell Proliferation; Cell Survival; Flavanones; Flavonoids; Guanosine Triphosphate; Humans; Inhibitor of Differentiation Protein 1; Lung Neoplasms; Male; Mice; Mice, Inbred BALB C; Mice, Nude; Neoplasm Invasiveness; Neoplasm Metastasis; Phenotype; Phosphorylation; Plant Extracts; Scutellaria; Shelterin Complex; Telomere-Binding Proteins

2019
Response of human non-small-cell lung cancer cells to the influence of Wogonin with SGK1 dynamics.
    Acta biochimica et biophysica Sinica, 2017, Apr-01, Volume: 49, Issue:4

    A number of significant studies in the field of cell biology have revealed another pattern of intracellular signal transduction in which cells transmit information through the dynamics of key signaling molecules. Dynamical properties of p53 have been demonstrated to be the key factor in dictating cell fate, including cell cycle arrest, permanent cell cycle arrest, and cell death. Previous studies showed a negative feedback regulation pathway between SGK1 and p53, but the dynamics of SGK1 have never been reported before. Therefore, we used different dosing strategies of Wogonin to affect SGK1 dynamics and investigate its impact on cell response. Key factors, such as APAF1, BAX, GADD45A, p21, PML, and YPEL3, which are related to cell cycle arrest, senescence, and apoptosis, were measured at different time points after incubation with Wogonin. Western blot and quantitative reverse transcriptase-polymerase chain reaction analysis were used to examine protein and mRNA expression of these genes. In addition, we also used β-galactosidase staining and flow cytometric analysis to further verify the results. It was found that Wogonin inhibited cell viability and downregulated SGK1 protein levels; 20 μM Wogonin could induce non-small-cell lung cancer A549 cells into cell cycle arrest/senescence/apoptosis after 0.5/2/4 h, respectively; and SGK1 dynamics showed significant differences under different cell responses. Together, our findings showed that SGK1 protein dynamics can be an important part of intracellular signaling, directly influencing cellular response decisions.

    Topics: A549 Cells; Apoptosis; Apoptotic Protease-Activating Factor 1; bcl-2-Associated X Protein; Blotting, Western; Carcinoma, Non-Small-Cell Lung; Cell Cycle Checkpoints; Cell Cycle Proteins; Cell Survival; Cellular Senescence; Dose-Response Relationship, Drug; Down-Regulation; Flavanones; Gene Expression Regulation, Neoplastic; Humans; Immediate-Early Proteins; Kinetics; Lung Neoplasms; Molecular Structure; Nuclear Proteins; Protein Serine-Threonine Kinases; Reverse Transcriptase Polymerase Chain Reaction; Time Factors

2017
Wogonin enhances antitumor activity of tumor necrosis factor-related apoptosis-inducing ligand in vivo through ROS-mediated downregulation of cFLIPL and IAP proteins.
    Apoptosis : an international journal on programmed cell death, 2013, Volume: 18, Issue:5

    Combination of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) with other agents is a promising strategy to overcome TRAIL resistance in malignant cells. Wogonin, a flavonoid originated from Scutellaria baicalensis Georgi, has been shown to enhance TRAIL-induced apoptosis in malignant cells in in vitro studies. However, whether wogonin enhances TRAIL's antitumor activity in vivo has never been studied. In this study, the effect of combination of TRAIL and wogonin was tested in a non-small-cell lung cancer xenografted tumor model in nude mice. Consistent with the in vitro study showing that wogonin sensitized A549 cells to TRAIL-induced apoptosis, wogonin greatly enhanced TRAIL-induced suppression of tumor growth, accompanied with increased apoptosis in tumor tissues as determined by TUNEL assay. The expression levels of antiapoptotic proteins including long form of cellular FLICE-like inhibitory protein (cFLIPL), X-linked inhibitor of apoptosis protein (XIAP), and cellular inhibitor of apoptosis protein 1 and 2 (cIAP-1 and cIAP-2) were markedly reduced in both cultured cells and xenografted tumor tissues after co-treatment with wogonin and TRAIL. The down-regulation of these antiapoptotic proteins was likely mediated by proteasomal degradation that involved intracellular reactive oxygen species (ROS), because wogonin robustly induced ROS accumulation and ROS scavengers butylated hydroxyanisole (BHA) and N-acetyl-L-cysteine (NAC) and the proteasome inhibitor MG132 restored the expression of these antiapoptotic proteins in cells co-treated with wogonin and TRAIL. These results show for the first time that wogonin enhances TRAIL's antitumor activity in vivo, suggesting this strategy has an application potential for clinical anticancer therapy.

    Topics: Animals; Antineoplastic Agents, Phytogenic; Apoptosis; Baculoviral IAP Repeat-Containing 3 Protein; Carcinoma, Non-Small-Cell Lung; CASP8 and FADD-Like Apoptosis Regulating Protein; Cell Line, Tumor; Drug Synergism; Flavanones; Gene Expression Regulation, Neoplastic; Humans; Inhibitor of Apoptosis Proteins; Lung Neoplasms; Male; Mice; Mice, Nude; Neoplasm Transplantation; Reactive Oxygen Species; Signal Transduction; TNF-Related Apoptosis-Inducing Ligand; Ubiquitin-Protein Ligases

2013
Wogonin potentiates cisplatin-induced cancer cell apoptosis through accumulation of intracellular reactive oxygen species.
    Oncology reports, 2012, Volume: 28, Issue:2

    Chemoresistance to cisplatin is a major limitation of cisplatin-based chemotherapy in the clinic. The combination of cisplatin with other agents has been recognized as a promising strategy to overcome cisplatin resistance. Previous studies have shown that wogonin (5,7-dihydroxy-8-methoxyflavone), a flavonoid isolated from the root of the medicinal herb Scutellaria baicalensis Georgi, sensitizes cancer cells to chemotheraputics such as etoposide, adriamycin, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) and TNF. However, the effect of wogonin on cisplatin-induced cytotoxicity has not been previously reported. In this study, the non-small cell lung cancer cell line A549 and the cervical cancer cell line HeLa were treated with wogonin or cisplatin individually or in combination. It was found for the first time that wogonin is able to sensitize cisplatin-induced apoptosis in both A549 cells and HeLa cells as indicated by the potentiation of activation of caspase-3, and cleavage of the caspase-3 substrate PARP in wogonin and cisplatin co-treated cells. Importantly, wogonin robustly induced H2O2 accumulation in these cells, which substantially contributes to the sensitization of cisplatin cytotoxicity by wogonin, as two reactive oxygen species scavengers, butylated hydroxyanisole (BHA) and N-acetyl-L-cysteine (NAC), significantly suppressed the potentiated cytotoxicity caused by wogonin and cisplatin co-treatment. The results from this study provide important new evidence supporting the potential use of wogonin as a cisplatin sensitizer for cancer therapy.

    Topics: Antineoplastic Combined Chemotherapy Protocols; Apoptosis; Carcinoma, Non-Small-Cell Lung; Cell Line, Tumor; Cisplatin; Drug Synergism; Female; Flavanones; HeLa Cells; Humans; Male; Reactive Oxygen Species; Uterine Cervical Neoplasms

2012
Reversal of inflammation-associated dihydrodiol dehydrogenases (AKR1C1 and AKR1C2) overexpression and drug resistance in nonsmall cell lung cancer cells by wogonin and chrysin.
    International journal of cancer, 2007, May-01, Volume: 120, Issue:9

    Dihydrodiol dehydrogenase (DDH) is a member of the aldo-keto reductases superfamily (AKR1C1-AKR1C4), which plays central roles in the metabolism of steroid hormone, prostaglandin and xenobiotics. We have previously detected overexpression of DDH as an indicator of poor prognosis and chemoresistance in human non-small lung cancer (NSCLC). We also found DDH expression to be closely related to chronic inflammatory conditions. The aim of this study was to investigate the links between inflammation, DDH expression and drug resistance in NSCLC cells. We showed that pro-inflammatory mediators including interleukin-6 (IL-6) could induce AKR1C1/1C2 expression in NSCLC cells and increase cellular resistance to cisplatin and adriamycin. This effect was nullified by Safingol, a protein kinase C inhibitor. Moreover, the expression of AKR1C1/1C2 was inversely correlated to NBS1 and apoptosis-inducing factor (AIF). We also showed that IL-6-induced AKR1C1/1C2 expression and drug resistance were inhibited by wogonin and chrysin, which are major flavonoids in Scutellaria baicalensis, a widely used traditional Chinese and Japanese medicine. In conclusion, this study demonstrated novel links of pro-inflammatory signals, AKR1C1/1C2 expression and drug resistance in NSCLC. The protein kinase C pathway may play an important role in this process. Overexpression of AKR1C1/1C2 may serve as a marker of chemoresistance. Further studies are warranted to evaluate wogonin and chrysin as a potential adjuvant therapy for drug-resistant NSCLC, especially for those with AKR1C1/1C2 overexpression.

    Topics: 20-Hydroxysteroid Dehydrogenases; Apoptosis; Carcinoma, Non-Small-Cell Lung; Cell Cycle; Cell Line, Tumor; DNA Repair; Dose-Response Relationship, Drug; Doxorubicin; Drug Resistance, Neoplasm; Flavanones; Flavonoids; Humans; Hydroxysteroid Dehydrogenases; Interleukin-6; Lung Neoplasms

2007