withanolides has been researched along with Hemolysis* in 2 studies
2 other study(ies) available for withanolides and Hemolysis
Article | Year |
---|---|
Evaluating the inhibitory potential of Withania somnifera on platelet aggregation and inflammation enzymes: An in vitro and in silico study.
Context Withania somnifera (L.) Dunal is traditionally used for treating various ailments, but lacks scientific evaluation. Objective This study evaluates Withania somnifera (WS) for its effect on platelet activity and inflammatory enzymes. Materials and methods Aqueous and ethanolic (1:1) leaf extracts were subjected to in vitro indirect haemolytic activity using Naja naja venom, human platelet aggregation was quantified for lipid peroxidation using arachidonic acid (AA) as agonist and 5-lipoxygenase (5-LOX) levels were determined using standard spectrometric assays. Further, molecular docking was performed by the ligand fit method using molegro software package (Molegro ApS, Aarhus, Denmark). Results The study found that aqueous and ethanol extracts have very negligible effect (15%) with an IC50 value of 13.8 mg/mL on PLA2 from Naja naja venom. Further, extracts of WS also had very little effect (18%) with an IC50 value of 16.6 mg/mL on malondialdehyde (MDA) formation. However, a 65% inhibition of 5-LOX with an IC50 value of 0.92 mg/mL was observed in 1:1 ethanol extracts. The same was evident from SAR model with the active ingredient withaferin A binding predominantly on Phe 77, Tyr 98, Arg 99, Asp 164, Leu 168, Ser 382, Arg 395, Tyr 396 and Tyr 614 with an atomic contact energy value of -128.96 compared to standard phenidone (-103.61). Thus, the current study validates the application of WS for inflammatory diseases. Conclusion This study reveals the inhibitory potential of W. somnifera on inflammatory enzymes and platelet aggregation. Thus, WS can serve as a newer, safer and affordable medicine for inflammatory diseases. Topics: Anti-Inflammatory Agents; Blood Platelets; Cyclooxygenase Inhibitors; Elapid Venoms; Ethanol; Hemolysis; Humans; Lipid Peroxidation; Lipoxygenase Inhibitors; Molecular Docking Simulation; Molecular Structure; Phospholipase A2 Inhibitors; Phospholipases A2, Secretory; Phytotherapy; Plant Extracts; Plant Leaves; Plants, Medicinal; Platelet Aggregation; Platelet Aggregation Inhibitors; Solvents; Structure-Activity Relationship; Withania; Withanolides | 2016 |
Withaferin A-stimulated Ca2+ entry, ceramide formation and suicidal death of erythrocytes.
Withaferin A, a triterpenoid component from Withania somnifera, counteracts malignancy, an effect attributed to stimulation of apoptosis. Withaferin A is partially effective through induction of oxidative stress, altered gene expression and mitochondrial depolarization. Erythrocytes lack mitochondria and nuclei but may enter apoptosis-like eryptosis, a suicidal cell death characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Triggers of eryptosis include increase of cytosolic Ca(2+)-activity [Ca(2+)](i) following activation of oxidant-sensitive Ca(2+)-permeable cation channels, ceramide formation and/or ATP-depletion. The present study explored, whether withaferin A triggers eryptosis. To this end, [Ca(2+)](i) was estimated from Fluo3-fluorescence, cell volume from forward scatter, phosphatidylserine exposure from annexin-V-binding, hemolysis from hemoglobin release, oxidative stress from DCFDA-fluorescence and ceramide abundance utilizing antibodies. A 48 h exposure to withaferin A significantly decreased forward scatter (at ≥ 10 μM withaferin concentration) and increased [Ca(2+)](i) (≥ 5 μM), ROS-formation (≥ 10 μM) ceramide-formation ( ≥ 10 μM) as well as annexin-V-binding ( ≥ 5 μM). Withaferin A treatment was followed by slight but significant increase of hemolysis. Extracellular Ca(2+) removal, amiloride, and the antioxidant N-acetyl-l-cysteine significantly blunted withaferin A-triggered annexin-V-binding. The present observations reveal that withaferin A triggers suicidal erythrocyte death despite the absence of gene expression and key elements of apoptosis such as mitochondria. Topics: Antineoplastic Agents; Apoptosis; Calcium; Ceramides; Erythrocytes; Hemolysis; Oxidative Stress; Withanolides | 2013 |