withaferin-a and Prostatic-Neoplasms

withaferin-a has been researched along with Prostatic-Neoplasms* in 13 studies

Reviews

1 review(s) available for withaferin-a and Prostatic-Neoplasms

ArticleYear
A Perspective on
    Journal of immunology research, 2021, Volume: 2021

    Medicinal plants serve as a lead source of bioactive compounds and have been an integral part of day-to-day life in treating various disease conditions since ancient times. Withaferin A (WFA), a bioactive ingredient of

    Topics: Animals; Antineoplastic Agents, Phytogenic; Disease Models, Animal; Humans; Killer Cells, Natural; Male; Prostate; Prostatic Neoplasms; Th1 Cells; Tumor Microenvironment; Withania; Withanolides

2021

Other Studies

12 other study(ies) available for withaferin-a and Prostatic-Neoplasms

ArticleYear
SILAC-based quantitative MS approach reveals Withaferin A regulated proteins in prostate cancer.
    Journal of proteomics, 2021, 09-15, Volume: 247

    Withaferin A (WA) is a steroidal lactone extracted from Withania somnifera, commonly known as Ashwagandha. WA has several therapeutic benefits. The current study aims to identify proteins that are potentially regulated by WA in prostate cancer (PCA) cells. We used a SILAC-based proteomic approach to analyze the expression of proteins in response to WA treatment at 4 h and 24 h time points in three PCA cell lines: 22Rv1, DU-145, and LNCaP. Ontology analysis suggested that prolonged treatment with WA upregulated the expression of proteins involved in stress-response pathways. Treatment with WA increased oxidative stress, reduced global mRNA translation, and elevated the expression of cytoprotective stress granule (SG) protein G3BP1. WA treatment also enhanced the formation of SGs. The elevated expression of G3BP1 and the formation of SGs might constitute a mechanism of cytoprotection in PCA cells. Knockdown of G3BP1 blocked SG formation and enhanced the efficacy of WA to reduce PCA cell survival. SIGNIFICANCE: Withaferin A, a steroidal lactone, extracted from Withania somnifera is a promising anti-cancer drug. Using a SILAC-based quantitative proteomic approach, we identified proteins changed by WA-treatment at 4 h and 24 h in three prostate cancer (PCA) cell lines. WA-treatment induced the expression of proteins involved in apoptosis and reduced the expression of proteins involved in cell growth at 4 h. WA-treatment for 24 h enhanced the expression of proteins involved in stress response pathways. WA-treated cells exhibited increased oxidative stress, reduced mRNA translation and enhanced SG formation. PCA is characterized by higher metabolic rate and increased oxidative stress. PCA with a higher stress tolerance can effectively adapt to anti-cancer treatment stress, leading to drug resistance and cellular protection. Enhancing the level of oxidative stress along with inhibition of corresponding cytoprotective stress response pathways is a feasible option to prevent PCA from getting adapted to treatment stress. WA-treatment induced oxidative stress, in combination with blocking SGs by G3BP1 targeting, offers a therapeutic strategy to reduce PCA cell survival.

    Topics: DNA Helicases; Humans; Male; Poly-ADP-Ribose Binding Proteins; Prostatic Neoplasms; Proteomics; RNA Helicases; RNA Recognition Motif Proteins; Withanolides

2021
RNA-seq reveals novel mechanistic targets of withaferin A in prostate cancer cells.
    Carcinogenesis, 2020, 07-10, Volume: 41, Issue:6

    Withaferin A (WA) is a promising phytochemical exhibiting in vitro and in vivo anticancer activities against prostate and other cancers, but the mechanism of its action is not fully understood. In this study, we performed RNA-seq analysis using 22Rv1 human prostate cancer cell line to identify mechanistic targets of WA. Kyoto Encyclopedia of Genes and Genomes pathway analysis of the differentially expressed genes showed most significant enrichment of genes associated with metabolism. These results were validated using LNCaP and 22Rv1 human prostate cancer cells and Hi-Myc transgenic mice as models. The intracellular levels of acetyl-CoA, total free fatty acids and neutral lipids were decreased significantly following WA treatment in both cells, which was accompanied by downregulation of mRNA (confirmed by quantitative reverse transcription-polymerase chain reaction) and protein levels of key fatty acid synthesis enzymes, including ATP citrate lyase, acetyl-CoA carboxylase 1, fatty acid synthase and carnitine palmitoyltransferase 1A. Ectopic expression of c-Myc, but not constitutively active Akt, conferred a marked protection against WA-mediated suppression of acetyl-CoA carboxylase 1 and fatty acid synthase protein expression, and clonogenic cell survival. WA was a superior inhibitor of cell proliferation and fatty acid synthesis in comparison with known modulators of fatty acid metabolism including cerulenin and etomoxir. Intraperitoneal WA administration to Hi-Myc transgenic mice (0.1 mg/mouse, three times/week for 5 weeks) also resulted in a significant decrease in circulating levels of total free fatty acids and phospholipids, and expression of ATP citrate lyase, acetyl-CoA carboxylase 1, fatty acid synthase and carnitine palmitoyltransferase 1A proteins in the prostate in vivo.

    Topics: Animals; Apoptosis; Biomarkers, Tumor; Cell Proliferation; Gene Expression Regulation, Neoplastic; Humans; Male; Metabolome; Mice; Mice, Transgenic; Prostatic Neoplasms; RNA-Seq; Tumor Cells, Cultured; Withanolides

2020
Cytoprotective autophagy induction by withaferin A in prostate cancer cells involves GABARAPL1.
    Molecular carcinogenesis, 2020, Volume: 59, Issue:10

    Withaferin A (WA) is a naturally occurring steroidal lactone with proven cancer chemopreventive activity in preclinical models of different cancers including prostate adenocarcinoma. Previously we compared the RNA-seq data from control and WA-treated 22Rv1 human prostate cancer cells to identify mechanistic targets of this phytochemical. The Gene Ontology pathway analysis of the RNA-seq data revealed significant upregulation of genes associated with autophagy upon WA treatment in 22Rv1 cells. In this study, we extended these findings to investigate the mechanism underlying WA-induced autophagy. Initially, we confirmed autophagy induction by WA treatment by transmission electron microscopy using three prostate cancer cell lines (LNCaP, 22Rv1, and PC-3). Fourteen common genes altered by 8- and 16-hour exposure to WA were identified from human autophagy PCR array and these results were consistent with the RNA-seq data. Two key autophagy markers (LC3BII and SQSTM1) were robustly increased in WA-exposed LNCaP, 22Rv1, and PC-3 cells as determined by immunoblotting, and this effect was elevated in the presence of autophagy inhibitor bafilomycin A1 (BafA1). BafA1 treatment augmented WA's cytotoxicity and subsequently its proapoptotic potential. WA treatment induced GABARAPL1 (ATG8L) protein expression in all three cell lines and its knockdown by RNA interference attenuated WA-mediated apoptosis. WA-induced autophagy was not affected in the presence of an antioxidant (EUK134). Taken together, the present study reveals that WA-mediated autophagy is cytoprotective and mediated by GABARAPL1.

    Topics: Adaptor Proteins, Signal Transducing; Apoptosis; Autophagy; Biomarkers, Tumor; Cell Proliferation; Cytoprotection; Gene Expression Profiling; Gene Expression Regulation, Neoplastic; Humans; Male; Microtubule-Associated Proteins; Prognosis; Prostatic Neoplasms; Tumor Cells, Cultured; Withanolides

2020
Withaferin A Inhibits Prostate Carcinogenesis in a PTEN-deficient Mouse Model of Prostate Cancer.
    Neoplasia (New York, N.Y.), 2017, Volume: 19, Issue:6

    We recently demonstrated that AKT activation plays a role in prostate cancer progression and inhibits the pro-apoptotic function of FOXO3a and Par-4. AKT inhibition and Par-4 induction suppressed prostate cancer progression in preclinical models. Here, we investigate the chemopreventive effect of the phytonutrient Withaferin A (WA) on AKT-driven prostate tumorigenesis in a Pten conditional knockout (Pten-KO) mouse model of prostate cancer. Oral WA treatment was carried out at two different doses (3 and 5 mg/kg) and compared to vehicle over 45 weeks. Oral administration of WA for 45 weeks effectively inhibited primary tumor growth in comparison to vehicle controls. Pathological analysis showed the complete absence of metastatic lesions in organs from WA-treated mice, whereas discrete metastasis to the lungs was observed in control tumors. Immunohistochemical analysis revealed the down-regulation of pAKT expression and epithelial-to-mesenchymal transition markers, such as β-catenin and N-cadherin, in WA-treated tumors in comparison to controls. This result corroborates our previous findings from both cell culture and xenograft models of prostate cancer. Our findings demonstrate that the daily administration of a phytonutrient that targets AKT activation provides a safe and effective treatment for prostate cancer in a mouse model with strong potential for translation to human disease.

    Topics: Animals; Apoptosis; Cadherins; Carcinogenesis; Cell Line, Tumor; Disease Models, Animal; Epithelial-Mesenchymal Transition; Humans; Male; Mice; Phytochemicals; Prostatic Neoplasms; Proto-Oncogene Proteins c-akt; PTEN Phosphohydrolase; Withanolides; Xenograft Model Antitumor Assays

2017
17β-Hydroxy-18-acetoxywithanolides from Aeroponically Grown Physalis crassifolia and Their Potent and Selective Cytotoxicity for Prostate Cancer Cells.
    Journal of natural products, 2016, Apr-22, Volume: 79, Issue:4

    When cultivated under aeroponic growth conditions, Physalis crassifolia produced 11 new withanolides (1-11) and seven known withanolides (12-18) including those obtained from the wild-crafted plant. The structures of the new withanolides were elucidated by the application of spectroscopic techniques, and the known withanolides were identified by comparison of their spectroscopic data with those reported. Withanolides 1-11 and 16 were evaluated for their potential anticancer activity using five tumor cell lines. Of these, the 17β-hydroxy-18-acetoxywithanolides 1, 2, 6, 7, and 16 showed potent antiproliferative activity, with some having selectivity for prostate adenocarcinoma (LNCaP and PC-3M) compared to the breast adenocarcinoma (MCF-7), non-small-cell lung cancer (NCI-H460), and CNS glioma (SF-268) cell lines used. The cytotoxicity data obtained for 12-15, 17, and 19 have provided additional structure-activity relationship information for the 17β-hydroxy-18-acetoxywithanolides.

    Topics: Antineoplastic Agents, Phytogenic; Cell Line, Tumor; Drug Screening Assays, Antitumor; Humans; Male; Molecular Structure; Physalis; Prostatic Neoplasms; Structure-Activity Relationship; Withanolides

2016
Inhibition of AKT promotes FOXO3a-dependent apoptosis in prostate cancer.
    Cell death & disease, 2016, Feb-25, Volume: 7

    Growth factor-induced activation of protein kinase-B (PKB), also known as AKT, induces pro-survival signaling and inhibits activation of pro-apoptotic signaling molecules including the Forkhead box O-3a (FOXO3a) transcription factor and caspase in transformed prostate cells in vitro. Earlier we reported that Withaferin-A (WA), a small herbal molecule, induces pro-apoptotic response-4 (Par-4) mediated apoptosis in castration-resistant prostate cancer (CRPC) cells. In the present study, we demonstrate that inhibition of AKT facilitates nuclear shuttling of FOXO3a where it regulates Par-4 transcription in CRPC cells. FOXO3a is upstream of Par-4 signaling, which is required for induction of apoptosis in CRPC cells. Promoter bashing studies and Ch-IP analysis confirm a direct interaction of FOXO3a and Par-4; a sequential deletion of FOXO3a-binding sites in the Par-4 promoter fails to induce Par-4 activation. To confirm these observations, we either overexpressed AKT or silenced FOXO3a activation in CRPC cells. Both methods inhibit Par-4 function and apoptosis is significantly compromised. In xenograft tumors derived from AKT-overexpressed CRPC cells, FOXO3a and Par-4 expression is downregulated, leading to aggressive tumor growth. Oral administration of WA to mice with xenograft tumors restores FOXO3a-mediated Par-4 functions and results in inhibited tumor growth. Finally, an inverse correlation of nuclear localization of AKT expression corresponds to cytoplasmic Par-4 localization in human prostate tissue array. Our studies suggest that Par-4 is one of the key transcriptional targets of FOXO3a, and Par-4 activation is required for induction of apoptosis in CRPC cells. Activation of FOXO3a appears to be an attractive target for the treatment of CRPC and molecules such as WA can be explored further for the treatment of CRPC.

    Topics: Animals; Antineoplastic Agents; Apoptosis; Apoptosis Regulatory Proteins; Binding Sites; Cell Line, Tumor; Cell Survival; Forkhead Box Protein O3; Humans; Male; Mice; Mice, Inbred BALB C; Mice, Nude; Promoter Regions, Genetic; Prostatic Neoplasms; Proto-Oncogene Proteins c-akt; Receptors, Androgen; RNA Interference; Signal Transduction; Withanolides

2016
Oral administration of withaferin A inhibits carcinogenesis of prostate in TRAMP model.
    Oncotarget, 2016, Aug-16, Volume: 7, Issue:33

    We previously reported that withaferin A (WA), a natural compound, deters prostate cancer by inhibiting AKT while inducing apoptosis. In the current study, we examined its chemopreventive efficacy against carcinogenesis in the prostate using the transgenic adenocarcinoma of mouse prostate (TRAMP) model. Two distinct sets of experiments were conducted. To determine whether WA delays tumor progression, it was given before cancer onset, at week 6, and until week 44. To determine its effect after the onset of prostate cancer, it was given from weeks 12 to 35. In both strategies, oral administration of WA effectively suppressed tumor burden when compared to vehicle-treated animals. No toxicity was seen in treated animals at gross pathological examination. Western blot analysis and immunohistochemistry of tumor sections revealed that in TRAMP controls, AKT and pAKT were highly expressed while nuclear FOXO3a and Par-4 were downregulated. On the contrary, treated mice showed inhibition of AKT signaling and activation of FOX03a-Par-4-induced cell death. They also displayed inhibition of mesenchymal markers such as β-catenin, vimentin, and snail as well as upregulation of E-cadherin. Because expressions of the angiogenic markers factor VIII and retic were downregulated, an anti-angiogenic role of WA is suggested. Overall, our results suggest that WA could be a promising anti-cancer agent that effectively inhibits carcinogenesis of the prostate.

    Topics: Adenocarcinoma; Administration, Oral; Animals; Antineoplastic Agents; Cell Transformation, Neoplastic; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Prostatic Neoplasms; Withanolides

2016
PAWR-mediated suppression of BCL2 promotes switching of 3-azido withaferin A (3-AWA)-induced autophagy to apoptosis in prostate cancer cells.
    Autophagy, 2015, Volume: 11, Issue:2

    An active medicinal component of plant origin with an ability to overcome autophagy by inducing apoptosis should be considered a therapeutically active lead pharmacophore to control malignancies. In this report, we studied the effect of concentration-dependent 3-AWA (3-azido withaferin A) sensitization to androgen-independent prostate cancer (CaP) cells which resulted in a distinct switching of 2 interrelated conserved biological processes, i.e. autophagy and apoptosis. We have observed 3 distinct parameters which are hallmarks of autophagy in our studies. First, a subtoxic concentration of 3-AWA resulted in an autophagic phenotype with an elevation of autophagy markers in prostate cancer cells. This led to a massive accumulation of MAP1LC3B and EGFP-LC3B puncta coupled with gradual degradation of SQSTM1. Second, higher toxic concentrations of 3-AWA stimulated ER stress in CaP cells to turn on apoptosis within 12 h by elevating the expression of the proapoptotic protein PAWR, which in turn suppressed the autophagy-related proteins BCL2 and BECN1. This inhibition of BECN1 in CaP cells, leading to the disruption of the BCL2-BECN1 interaction by overexpressed PAWR has not been reported so far. Third, we provide evidence that pawr-KO MEFs exhibited abundant autophagy signs even at toxic concentrations of 3-AWA underscoring the relevance of PAWR in switching of autophagy to apoptosis. Last but not least, overexpression of EGFP-LC3B and DS-Red-BECN1 revealed a delayed apoptosis turnover at a higher concentration of 3-AWA in CaP cells. In summary, this study provides evidence that 3-AWA is a strong anticancer candidate to abrogate protective autophagy. It also enhanced chemosensitivity by sensitizing prostate cancer cells to apoptosis through induction of PAWR endorsing its therapeutic potential.

    Topics: Apoptosis; Apoptosis Regulatory Proteins; Autophagy; Cell Line, Tumor; Endoplasmic Reticulum Chaperone BiP; Endoplasmic Reticulum Stress; Humans; Male; Prostatic Neoplasms; Proto-Oncogene Proteins c-bcl-2; Signal Transduction; Withanolides

2015
Withaferin A Induces Cell Death Selectively in Androgen-Independent Prostate Cancer Cells but Not in Normal Fibroblast Cells.
    PloS one, 2015, Volume: 10, Issue:7

    Withaferin A (WA), a major bioactive component of the Indian herb Withania somnifera, induces cell death (apoptosis/necrosis) in multiple types of tumor cells, but the molecular mechanism underlying this cytotoxicity remains elusive. We report here that 2 μM WA induced cell death selectively in androgen-insensitive PC-3 and DU-145 prostate adenocarcinoma cells, whereas its toxicity was less severe in androgen-sensitive LNCaP prostate adenocarcinoma cells and normal human fibroblasts (TIG-1 and KD). WA also killed PC-3 cells in spheroid-forming medium. DNA microarray analysis revealed that WA significantly increased mRNA levels of c-Fos and 11 heat-shock proteins (HSPs) in PC-3 and DU-145, but not in LNCaP and TIG-1. Western analysis revealed increased expression of c-Fos and reduced expression of the anti-apoptotic protein c-FLIP(L). Expression of HSPs such as HSPA6 and Hsp70 was conspicuously elevated; however, because siRNA-mediated depletion of HSF-1, an HSP-inducing transcription factor, reduced PC-3 cell viability, it is likely that these heat-shock genes were involved in protecting against cell death. Moreover, WA induced generation of reactive oxygen species (ROS) in PC-3 and DU-145, but not in normal fibroblasts. Immunocytochemistry and immuno-electron microscopy revealed that WA disrupted the vimentin cytoskeleton, possibly inducing the ROS generation, c-Fos expression and c-FLIP(L) suppression. These observations suggest that multiple events followed by disruption of the vimentin cytoskeleton play pivotal roles in WA-mediated cell death.

    Topics: Androgens; Autophagy; Cell Death; Cell Line, Tumor; Culture Media, Serum-Free; Drug Resistance, Neoplasm; Endoplasmic Reticulum; Fibroblasts; Gene Expression Regulation, Neoplastic; Humans; Male; Mitochondria; Prostatic Neoplasms; Proto-Oncogene Proteins c-fos; Subcellular Fractions; Up-Regulation; Vimentin; Withanolides

2015
Withaferin A, a steroidal lactone from Withania somnifera, induces mitotic catastrophe and growth arrest in prostate cancer cells.
    Journal of natural products, 2013, Oct-25, Volume: 76, Issue:10

    Cell cycle deregulation is strongly associated with the pathogenesis of prostate cancer. Clinical trials of cell cycle regulators that target either the G0/G1 or G2/M phase to inhibit the growth of cancers including prostate cancer are increasing. The present study focused on the cell cycle regulatory potential of the withanolide withaferin A (1) on prostate cancer cells. Compound 1 induced G2/M arrest in both prostate cancer cell lines (PC-3 and DU-145) when treated for 48 h. The G2/M arrest was accompanied by upregulation of phosphorylated Wee-1, phosphorylated histone H3, p21, and Aurora B. On the other hand, downregulation of cyclins (A2, B1, and E2) and a reduction in phosphorylated Cdc2 (Tyr15) were observed in 1-treated prostate cancer cells. In addition, decreased levels of phosphorylated Chk1 (Ser345) and Chk2 (Thr68) were evident in prostate cancer cells on treatment with 1. These results suggest that activation of Cdc2 leads to arrest in the M phase, with abnormal duplication, and initiation of mitotic catastrophe that results in cell death. In conclusion, these results show clearly the potential of 1 as a regulator of the G2/M phase of the cell cycle and as a therapeutic agent for prostate cancer.

    Topics: Apoptosis; CDC2 Protein Kinase; Cell Cycle; Cell Division; Cyclin-Dependent Kinase Inhibitor p21; Cyclins; G2 Phase; Histones; Humans; Male; Mitosis; Molecular Structure; Prostatic Neoplasms; Protein Serine-Threonine Kinases; Tumor Suppressor Protein p53; Withania; Withanolides

2013
The tumor proteasome is a primary target for the natural anticancer compound Withaferin A isolated from "Indian winter cherry".
    Molecular pharmacology, 2007, Volume: 71, Issue:2

    Withaferin A (WA) is a steroidal lactone purified from medicinal plant "Indian Winter Cherry" that is widely researched for its variety of properties, including antitumor effects. However, the primary molecular target of WA is unknown. By chemical structure analysis, we hypothesized that Withaferin A might be a natural proteasome inhibitor. Computational modeling studies consistently predict that C1 and C24 of WA are highly susceptible toward a nucleophilic attack by the hydroxyl group of N-terminal threonine of the proteasomal chymotrypsin subunit beta5. Furthermore, WA potently inhibits the chymotrypsin-like activity of a purified rabbit 20S proteasome (IC50=4.5 microM) and 26S proteasome in human prostate cancer cultures (at 5-10 microM) and xenografts (4-8 mg/kg/day). Inhibition of prostate tumor cellular proteasome activity in cultures and in vivo by WA results in accumulation of ubiquitinated proteins and three proteasome target proteins (Bax, p27, and IkappaB-alpha) accompanied by androgen receptor protein suppression (in androgen-dependent LNCaP cells) and apoptosis induction. Treatment of WA under conditions of the aromatic ketone reduction, or reduced form of Celastrol, had significantly decreased the proteasome-inhibitory and apoptosis-inducing activities. Treatment of human prostate PC-3 xenografts with WA for 24 days resulted in 70% inhibition of tumor growth in nude mice, associated with 56% inhibition of the tumor tissue proteasomal chymotrypsinlike activity. Our results demonstrate that the tumor proteasome beta5 subunit is the primary target of WA, and inhibition of the proteasomal chymotrypsin-like activity by WA in vivo is responsible for, or contributes to, the antitumor effect of this ancient medicinal compound.

    Topics: Animals; Antineoplastic Agents; Apoptosis; Cell Line, Tumor; Chymotrypsin; Ergosterol; Humans; Male; Mice; Mice, Nude; Models, Molecular; Neoplasms; Plants, Medicinal; Prostatic Neoplasms; Proteasome Endopeptidase Complex; Proteasome Inhibitors; Rabbits; Structure-Activity Relationship; Transplantation, Heterologous; Withanolides

2007
Par-4-dependent apoptosis by the dietary compound withaferin A in prostate cancer cells.
    Cancer research, 2007, Jan-01, Volume: 67, Issue:1

    Deletion or mutation of the androgen receptor (AR) renders prostate tumors refractory to apoptosis by androgen ablation, the mainstay of prostate cancer therapy. To identify novel therapeutics that can induce apoptosis regardless of the AR status of prostate cancer cells, we screened dietary herbal compounds using a reporter assay for the prostate apoptosis response-4 (Par-4) gene, which induces p53- and PTEN-independent and cancer-selective apoptosis. One of the compounds, withaferin A (WA), a major constituent of the dietary compound Withania somnifera, induced Par-4-dependent apoptosis in androgen-refractory prostate cancer cells and regression of PC-3 xenografts in nude mice. Interestingly, restoration of wild-type AR in PC-3 (AR negative) cells abrogated both Par-4 induction and apoptosis by WA. Individually, WA and anti-androgens induced neither Par-4 nor apoptosis in androgen-responsive prostate cancer cells, yet in combination, WA and anti-androgen synergistically induced Par-4 and apoptosis in androgen-responsive prostate cancer cells. Thus, when judiciously combined with anti-androgens, WA inhibits survival of both androgen-responsive and androgen-refractory prostate cancer cells by a Par-4-dependent mechanism. As Par-4 up-regulation induces apoptosis in most tumor cells, our findings can be extended to high-throughput screens to identify synergistic combinations for both therapy-sensitive and therapy-resistant cancers.

    Topics: Androgen Receptor Antagonists; Animals; Apoptosis; Apoptosis Regulatory Proteins; Cell Line, Tumor; Ergosterol; Humans; Male; Mice; Mice, Nude; Neoplasms, Hormone-Dependent; Prostatic Neoplasms; Receptors, Androgen; Transfection; Withanolides; Xenograft Model Antitumor Assays

2007
chemdatabank.com