withaferin-a and Colonic-Neoplasms

withaferin-a has been researched along with Colonic-Neoplasms* in 3 studies

Other Studies

3 other study(ies) available for withaferin-a and Colonic-Neoplasms

ArticleYear
Early cancer detection using the fluorescent Ashwagandha chitosan nanoparticles combined with near-infrared light diffusion characterization: in vitro study.
    Lasers in medical science, 2023, Jan-11, Volume: 38, Issue:1

    Early cancer diagnosis through characterizing light propagation and nanotechnology increases the survival rate. The present research is aimed at evaluating the consequence of using natural nanoparticles in cancer therapy and diagnosis. Colon cancer cells were differentiated from the normal cells via investigating light diffusion combined with the fluorescence effect of the Ashwagandha chitosan nanoparticles (Ash C NPs). Ionic gelation technique synthesized the Ash C NPs. High-resolution transmission electron microscope, dynamic light scattering, and zeta potential characterized Ash C NPs. Fourier transform infrared spectroscopy analyzed Ash C NPs, chitosan, and Ashwagandha root water extract. Moreover, the MTT assay evaluated the cytotoxicity of Ash C NPs under the action of near-infrared light (NIR) irradiation. The MTT assay outcomes were statistically analyzed by Bonferroni post hoc multiple two-group comparisons using one-way variance analysis (ANOVA). Based on the Monte-Carlo simulation technique, the spatially resolved steady-state diffusely reflected light from the cancerous and healthy cells is acquired. The diffuse equation reconstructed the optical fluence rate using the finite element technique. The fluorescent effect of the nanoparticles was observed when the cells were irradiated with NIR. The MTT assay revealed a decrease in the cell viability under the action of Ash C NPs with and without laser irradiation. Colon cancer and normal cells were differentiated based on the optical characterization after laser irradiation. The light diffusion equation was successfully resolved for the fluence rate on cells' surfaces showing different normal and cancer cells values. Ash C NPs appeared its fluorescent effect in the presence of NIR laser.

    Topics: Chitosan; Colonic Neoplasms; Coloring Agents; Humans; Nanoparticles; Plant Extracts; Spectroscopy, Fourier Transform Infrared

2023
The chemopreventive effect of withaferin A on spontaneous and inflammation-associated colon carcinogenesis models.
    Carcinogenesis, 2018, 12-31, Volume: 39, Issue:12

    Chemopreventive effects and associated mechanisms of withaferin A (WA) against intestinal and colon carcinogenesis remain unknown. We investigated the chemopreventive effect of WA on transgenic adenomatous polyposis coli (APCMin/+) mouse and chemically induced azoxymethane/dextran sodium sulfate (AOM/DSS) models of intestinal and colon carcinogenesis. Oral WA administration (4 and 3 mg/kg) inhibited tumor initiation and progression of intestinal polyps formation in APCMin/+ mice and colon carcinogenesis in the AOM/DSS mouse model. WA-administered mice showed a significant reduction in both number [duodenum, 33% (P > 0.05); jejunum, 32% (P < 0.025); ileum, 43% ( P < 0.001); and colon 59% (P < 0.01] and size of polyps in APCMin/+ mice compared with the respective controls. Similarly, tumor multiplicity was significantly reduced (P < 0.05) in the colon of WA-administered AOM/DSS mice. Pathological analysis showed reduced adenomas and tissue inflammation in WA-administered mouse models. Molecular studies suggested that WA inhibited the expression of inflammatory (interluekin-6, tumor necrosis factor-alpha and cyclooxygenase-2), pro-survival (pAKT, Notch1 and NF-κB) markers in APCMin/+ and AOM/DSS models. The results suggest that WA is a potent agent for preventing colon carcinogenesis and further investigation is required to show clinical utility of the agent.

    Topics: Animals; Anticarcinogenic Agents; Carcinogenesis; Chemoprevention; Colon; Colonic Neoplasms; Disease Models, Animal; Female; Inflammation; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Withanolides

2018
Notch-1 inhibition by Withaferin-A: a therapeutic target against colon carcinogenesis.
    Molecular cancer therapeutics, 2010, Volume: 9, Issue:1

    Notch signaling plays a crucial role in the development of colon cancer; targeting the Notch pathway may sensitize colon cancers to various adjuvant agents. The focus of our current study is to identify natural compounds that target Notch signaling and that might be beneficial for the prevention and treatment of colon cancer. Withaferin-A (WA) is a bioactive compound derived from Withania somnifera, which inhibits Notch-1 signaling and downregulates prosurvival pathways, such as Akt/NF-kappaB/Bcl-2, in three colon cancer cell lines (HCT-116, SW-480, and SW-620). In addition, WA downregulated the expression of mammalian target of rapamycin signaling components, pS6K and p4E-BP1, and activated c-Jun-NH(2)-kinase-mediated apoptosis in colon cancer cells. We also established the molecular link between Notch/Akt/mammalian target of rapamycin signaling by complementary approaches (i.e., overexpression of Notch-1 or inhibition of Notch-1 by small interfering RNA). Our results suggest that WA inhibits Notch-mediated prosurvival signaling, which facilitates c-Jun-NH(2)-kinase-mediated apoptosis in colon cancer cell lines. These results underscore the anticancer activity of WA, which exhibits potential for further development for targeted chemotherapy and/or chemoprevention strategies in the context of colon cancer.

    Topics: Apoptosis; Cell Line, Tumor; Cell Survival; Colonic Neoplasms; Drug Screening Assays, Antitumor; Enzyme Activation; Ergosterol; Gene Knockdown Techniques; Humans; Intracellular Signaling Peptides and Proteins; JNK Mitogen-Activated Protein Kinases; MAP Kinase Signaling System; Protein Serine-Threonine Kinases; Proto-Oncogene Proteins c-akt; Proto-Oncogene Proteins c-jun; Receptor, Notch1; TOR Serine-Threonine Kinases; Withanolides

2010