withaferin-a has been researched along with Carcinogenesis* in 4 studies
4 other study(ies) available for withaferin-a and Carcinogenesis
Article | Year |
---|---|
A Polyherbal Ashwagandha Formulation Exhibits Adjunctive Antitumor Efficacy Against U266 Myeloma Cells by Multi-Strategic Cytotoxic Effects: An Experimental Approach.
The present study explored the molecular mechanism of herbal (Unani) drug Habb-e-asgandh as anti-tumorigenic adjuvant therapy experimentally in U266 cells and its role in treatment of Multiple myeloma. The formulation of Habb-e-asgandh is investigated alone or as a combinatorial therapy with standard drug lenalidomide to check for its efficacy against U266 myeloma cells for prevention of drug relapse and resistance.. We performed the following assays on singly or in combination of Habb-e-asgandh-Lenalidomide treated U266 cells. The cytotoxicity evaluation done by MTT assay, we studied cell cycle kinetics by Propidium Iodide staining, mitochondrial apoptosis analysis by Annexin V/PI dual staining and JC1 staining assays. Further, anti-oxidative potential was assessed by ORAC assay and cytokine levels estimation of anti-inflammatory (TNF-alpha and IL6) and anti-angiogenic (VEGF and Ang-2) markers were done by ELISA.. The myeloma U266 cells when treated with Habb-e-asgandh alone or in combination with standard drug lenalidomide showed cytotoxicity in dose dependent manner with promising effects at 0.4 mg/ml (IC30) and 1.5 mg/ml (IC50) inhibitory concentrations. The formulation treated cells showed modulation in cell cycle kinetics patterned by sub Go/G1 population accumulation. Furthermore, it induced mitochondrial apoptosis mainly at half maximal inhibitory concentration and in combinatorial combinations. Significantly elevated oxidative capacities (p<0.05) and reduced levels of angiogenic and pro-inflammatory markers were observed. Multiple mechanism based inhibition by Habb-e-asgandh in co-treatment with lenalidomide against myeloma cells is indicated. Conclusion: Habb-e-asgandh formulation possess anti-tumorigenic efficacy against multiple myeloma. The adjunctive Habb-e-asgandh formulation with standard chemotherapeutic drug may prove to be a potent anti-myeloma agent in interventional therapy for Multiple myeloma if further studied in future avenues. Topics: Antineoplastic Agents; Carcinogenesis; Humans; Lenalidomide; Multiple Myeloma; Neoplasm Recurrence, Local | 2023 |
The chemopreventive effect of withaferin A on spontaneous and inflammation-associated colon carcinogenesis models.
Chemopreventive effects and associated mechanisms of withaferin A (WA) against intestinal and colon carcinogenesis remain unknown. We investigated the chemopreventive effect of WA on transgenic adenomatous polyposis coli (APCMin/+) mouse and chemically induced azoxymethane/dextran sodium sulfate (AOM/DSS) models of intestinal and colon carcinogenesis. Oral WA administration (4 and 3 mg/kg) inhibited tumor initiation and progression of intestinal polyps formation in APCMin/+ mice and colon carcinogenesis in the AOM/DSS mouse model. WA-administered mice showed a significant reduction in both number [duodenum, 33% (P > 0.05); jejunum, 32% (P < 0.025); ileum, 43% ( P < 0.001); and colon 59% (P < 0.01] and size of polyps in APCMin/+ mice compared with the respective controls. Similarly, tumor multiplicity was significantly reduced (P < 0.05) in the colon of WA-administered AOM/DSS mice. Pathological analysis showed reduced adenomas and tissue inflammation in WA-administered mouse models. Molecular studies suggested that WA inhibited the expression of inflammatory (interluekin-6, tumor necrosis factor-alpha and cyclooxygenase-2), pro-survival (pAKT, Notch1 and NF-κB) markers in APCMin/+ and AOM/DSS models. The results suggest that WA is a potent agent for preventing colon carcinogenesis and further investigation is required to show clinical utility of the agent. Topics: Animals; Anticarcinogenic Agents; Carcinogenesis; Chemoprevention; Colon; Colonic Neoplasms; Disease Models, Animal; Female; Inflammation; Male; Mice; Mice, Inbred C57BL; Mice, Transgenic; Withanolides | 2018 |
Withaferin A Inhibits Prostate Carcinogenesis in a PTEN-deficient Mouse Model of Prostate Cancer.
We recently demonstrated that AKT activation plays a role in prostate cancer progression and inhibits the pro-apoptotic function of FOXO3a and Par-4. AKT inhibition and Par-4 induction suppressed prostate cancer progression in preclinical models. Here, we investigate the chemopreventive effect of the phytonutrient Withaferin A (WA) on AKT-driven prostate tumorigenesis in a Pten conditional knockout (Pten-KO) mouse model of prostate cancer. Oral WA treatment was carried out at two different doses (3 and 5 mg/kg) and compared to vehicle over 45 weeks. Oral administration of WA for 45 weeks effectively inhibited primary tumor growth in comparison to vehicle controls. Pathological analysis showed the complete absence of metastatic lesions in organs from WA-treated mice, whereas discrete metastasis to the lungs was observed in control tumors. Immunohistochemical analysis revealed the down-regulation of pAKT expression and epithelial-to-mesenchymal transition markers, such as β-catenin and N-cadherin, in WA-treated tumors in comparison to controls. This result corroborates our previous findings from both cell culture and xenograft models of prostate cancer. Our findings demonstrate that the daily administration of a phytonutrient that targets AKT activation provides a safe and effective treatment for prostate cancer in a mouse model with strong potential for translation to human disease. Topics: Animals; Apoptosis; Cadherins; Carcinogenesis; Cell Line, Tumor; Disease Models, Animal; Epithelial-Mesenchymal Transition; Humans; Male; Mice; Phytochemicals; Prostatic Neoplasms; Proto-Oncogene Proteins c-akt; PTEN Phosphohydrolase; Withanolides; Xenograft Model Antitumor Assays | 2017 |
Stem cell marker nestin is critical for TGF-β1-mediated tumor progression in pancreatic cancer.
The stem cell marker nestin is an intermediate filament protein that plays an important role in cell integrity, migration, and differentiation. Nestin expression occurs in approximately one third of pancreatic ductal adenocarcinoma (PDAC), and its expression strongly correlates with tumor staging and metastasis. Little is known about the mechanisms by which nestin influences PDAC progression. Here, nestin overexpression in PDAC cells increased cell motility and drove phenotypic changes associated with the epithelial-mesenchymal transition (EMT) in vitro; conversely, knockdown of endogenous nestin expression reduced the migration rate and reverted cells to a more epithelial phenotype. Mouse xenograft studies showed that knockdown of nestin significantly reduced tumor incidence and volume. Nestin protein expression was associated with Smad4 status in PDAC cells; hence, nestin expression might be regulated by the TGF-β1/Smad4 pathway in PDAC. We examined nestin expression after TGF-β1 treatment in human pancreatic cancer PANC-1 and PANC-1 shSmad4 cells. The TGF-β1/Smad4 pathway induced nestin protein expression in PDAC cells in a Smad4-dependent manner. Moreover, increased nestin expression caused a positive feedback regulator of the TGF-β1 signaling system. In addition, hypoxia was shown to induce nestin expression in PDAC cells, and the hypoxia-induced expression of nestin is mediated by the TGF-β1/Smad4 pathway. Finally, the antimicrotubule inhibitors, cytochalasin D and withaferin A, exhibited anti-nestin activity; these inhibitors might be potential antimetastatic drugs. Our findings uncovered a novel role of nestin in regulating TGF-β1-induced EMT. Anti-nestin therapeutics may serve as a potential treatment for PDAC metastasis. Topics: Adenocarcinoma; Animals; Biomarkers, Tumor; Carcinogenesis; Carcinoma, Pancreatic Ductal; Cell Movement; Cytochalasin D; Disease Progression; Epithelial-Mesenchymal Transition; Gene Knockdown Techniques; Humans; Male; Mice; Mice, SCID; Microtubules; Neoplasm Metastasis; Nestin; Pancreas; Pancreatic Neoplasms; Signal Transduction; Smad4 Protein; Stem Cells; Transforming Growth Factor beta1; Up-Regulation; Withanolides; Xenograft Model Antitumor Assays | 2013 |