win-51708 has been researched along with Disease-Models--Animal* in 3 studies
3 other study(ies) available for win-51708 and Disease-Models--Animal
Article | Year |
---|---|
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection. Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection | 2020 |
Activation of NK₁ receptors in the locus coeruleus induces analgesia through noradrenergic-mediated descending inhibition in a rat model of neuropathic pain.
The locus coeruleus (LC) is a major source of noradrenergic projections to the dorsal spinal cord, and thereby plays an important role in the modulation of nociceptive information. The LC receives inputs from substance P (SP)-containing fibres from other regions, and expresses the NK(1) tachykinin receptor, a functional receptor for SP. In the present study, we investigated the roles of SP in the LC in neuropathic pain.. Chronic constriction injury (CCI) of the left sciatic nerve was performed in rats to induce neuropathic pain. After development of neuropathic pain, SP was injected into the LC and the nocifensive behaviours were assessed. The involvement of noradrenergic descending inhibition in SP-induced analgesia was examined by i.t. administration of yohimbine, an α(2) -adrenoceptor antagonist. NK(1) receptor expression in the LC was examined by immunohistochemistry.. In CCI rats, mechanical allodynia was alleviated by SP injection into the LC. These effects were abolished by prior injection of WIN 51708, an NK(1) receptor antagonist, into the LC or i.t. treatment with yohimbine. NK(1) receptor-like immunoreactivity was observed in noradrenergic neurons throughout the LC in intact rats, and remained unchanged after CCI.. SP in the LC exerted analgesic effects on neuropathic pain through NK(1) receptor activation and resulted in facilitation of spinal noradrenergic transmission. Accordingly, manipulation of the SP/NK(1) receptor signalling pathway in the LC may be a promising strategy for effective treatment of neuropathic pain. Topics: Adrenergic Neurons; Analgesia; Androstanes; Animals; Behavior, Animal; Benzimidazoles; Disease Models, Animal; Immunohistochemistry; Locus Coeruleus; Male; Neural Inhibition; Neuralgia; Neurokinin-1 Receptor Antagonists; Rats; Rats, Sprague-Dawley; Receptors, Neurokinin-1; Spinal Cord; Substance P | 2012 |
Involvement of substance P and central opioid receptors in morphine modulation of the CHS response.
Morphine administration prior to challenge with the antigen 2,4-dinitro-fluorobenzene increases the contact hypersensitivity (CHS) response in rats. The present study extended these findings by showing that central, but not systemic, administration of N-methylnaltrexone antagonized the morphine-induced enhancement of the CHS response. The importance of the neuroimmune mediator substance P was shown via the attenuation of the morphine-induced enhancement following both systemic and topical administration of the NK-1 antagonist WIN51,708. Taken together, the findings of the present study provide new data showing that central opioid receptors and peripheral substance P are involved in the morphine-induced enhancement of the CHS response. Topics: Androstanes; Animals; Benzimidazoles; Dermatitis, Contact; Dinitrofluorobenzene; Disease Models, Animal; Drug Administration Routes; Male; Morphine; Naltrexone; Narcotic Antagonists; Neurokinin-1 Receptor Antagonists; Quaternary Ammonium Compounds; Rats; Rats, Inbred Lew; Receptors, Opioid; Specific Pathogen-Free Organisms; Substance P | 2001 |