waixenicin-a and Hypoxia-Ischemia--Brain

waixenicin-a has been researched along with Hypoxia-Ischemia--Brain* in 2 studies

Reviews

1 review(s) available for waixenicin-a and Hypoxia-Ischemia--Brain

ArticleYear
Waixenicin A, a marine-derived TRPM7 inhibitor: a promising CNS drug lead.
    Acta pharmacologica Sinica, 2020, Volume: 41, Issue:12

    Ion channels are the third largest class of targets for therapeutic drugs. The pharmacology of ion channels is an important research area for identifying new treatment options for human diseases. The past decade or so has seen increasing interest in an ion channel protein belonging to the transient receptor potential (TRP) family, namely the melastatin subfamily member 7 (TRPM7), as an emerging drug target. TRPM7 is a bifunctional protein with a magnesium and calcium-conducting divalent ion channel fused with an active kinase domain. TRPM7 is ubiquitously expressed in human tissues, including the brain, and regulates various cell biology processes such as magnesium and calcium homeostasis, cell growth and proliferation, and embryonic development. TRPM7 provides a link between cellular metabolic status and intracellular calcium homeostasis in neurons due to TRPM7's unique sensitivity to fluctuating intracellular Mg·ATP levels. Thus, the protein plays a key role in ischemic and hypoxic neuronal cell death and brain injury, and is one of the key nonglutamate mechanisms in cerebral ischemia and stroke. Currently, the most potent and specific TRPM7 inhibitor is waixenicin A, a xenicane diterpenoid from the Hawaiian soft coral Sarcothelia edmondsoni. Using waixenicin A as a pharmacological tool, we demonstrated that TRPM7 is involved in promoting neurite outgrowth in vitro. Most recently, we found that waixenicin A reduced hypoxic-ischemic brain injury and preserved long-term behavioral outcomes in mouse neonates. We here suggest that TRPM7 is an emerging drug target for CNS diseases and disorders, and waixenicin A is a viable drug lead for these disorders.

    Topics: Acetates; Animals; Cell Line; Central Nervous System Agents; Diterpenes; Humans; Hypoxia-Ischemia, Brain; TRPM Cation Channels

2020

Other Studies

1 other study(ies) available for waixenicin-a and Hypoxia-Ischemia--Brain

ArticleYear
TRPM7 Mediates Neuronal Cell Death Upstream of Calcium/Calmodulin-Dependent Protein Kinase II and Calcineurin Mechanism in Neonatal Hypoxic-Ischemic Brain Injury.
    Translational stroke research, 2021, Volume: 12, Issue:1

    Transient receptor potential melastatin 7 (TRPM7), a calcium-permeable, ubiquitously expressed ion channel, is critical for axonal development, and mediates hypoxic and ischemic neuronal cell death in vitro and in vivo. However, the downstream mechanisms underlying the TRPM7-mediated processes in physiology and pathophysiology remain unclear. In this study, we employed a mouse model of hypoxic-ischemic brain cell death which mimics the pathophysiology of hypoxic-ischemic encephalopathy (HIE). HIE is a major public health issue and an important cause of neonatal deaths worldwide; however, the available treatments for HIE remain limited. Its survivors face life-long neurological challenges including mental retardation, cerebral palsy, epilepsy and seizure disorders, motor impairments, and visual and auditory impairments. Through a proteomic analysis, we identified calcium/calmodulin-dependent protein kinase II (CaMKII) and phosphatase calcineurin as potential mediators of cell death downstream from TRPM7 activation. Further analysis revealed that TRPM7 mediates cell death through CaMKII, calmodulin, calcineurin, p38, and cofilin cascade. In vivo, we found a significant reduction of brain injury and improvement of short- and long-term functional outcomes after HI after administration of specific TRPM7 blocker waixenicin A. Our data demonstrate a molecular mechanism of TRPM7-mediated cell death and identifies TRPM7 as a promising therapeutic and drug development target for HIE.

    Topics: Acetates; Animals; Animals, Newborn; Avoidance Learning; Calcineurin; Calcium-Calmodulin-Dependent Protein Kinase Type 2; Cell Death; Cells, Cultured; Diterpenes; Female; HEK293 Cells; Humans; Hypoxia-Ischemia, Brain; Male; Mice; Neurons; TRPM Cation Channels

2021