vmip-ii has been researched along with Inflammation* in 3 studies
3 other study(ies) available for vmip-ii and Inflammation
Article | Year |
---|---|
PET/CT Imaging of Chemokine Receptors in Inflammatory Atherosclerosis Using Targeted Nanoparticles.
Atherosclerosis is inherently an inflammatory process that is strongly affected by the chemokine-chemokine receptor axes regulating the trafficking of inflammatory cells at all stages of the disease. Of the chemokine receptor family, some specifically upregulated on macrophages play a critical role in plaque development and may have the potential to track plaque progression. However, the diagnostic potential of these chemokine receptors has not been fully realized. On the basis of our previous work using a broad-spectrum peptide antagonist imaging 8 chemokine receptors together, the purpose of this study was to develop a targeted nanoparticle for sensitive and specific detection of these chemokine receptors in both a mouse vascular injury model and a spontaneously developed mouse atherosclerosis model.. The viral macrophage inflammatory protein-II (vMIP-II) was conjugated to a biocompatible poly(methyl methacrylate)-core/polyethylene glycol-shell amphiphilic comblike nanoparticle through controlled conjugation and polymerization before radiolabeling with (64)Cu for PET imaging in an apolipoprotein E-deficient (ApoE(-/-)) mouse vascular injury model and a spontaneous ApoE(-/-) mouse atherosclerosis model. Histology, immunohistochemistry, and real-time reverse transcription polymerase chain reaction were performed to assess the plaque progression and upregulation of chemokine receptors.. The chemokine receptor-targeted (64)Cu-vMIP-II-comb showed extended blood retention and improved biodistribution. PET imaging showed specific tracer accumulation at plaques in ApoE(-/-) mice, confirmed by competitive receptor blocking studies and assessment in wild-type mice. Histopathologic characterization showed the progression of plaque including size and macrophage population, corresponding to the elevated concentration of chemokine receptors and more importantly increased PET signals.. This work provides a useful nanoplatform for sensitive and specific detection of chemokine receptors to assess plaque progression in mouse atherosclerosis models. Topics: Animals; Apolipoproteins E; Atherosclerosis; Chemokines; Copper Radioisotopes; Inflammation; Mice; Mice, Inbred C57BL; Mice, Knockout; Nanoparticles; Plaque, Atherosclerotic; Positron Emission Tomography Computed Tomography; Radiopharmaceuticals; Receptors, Chemokine; Tissue Distribution | 2016 |
Chemokine antagonist infusion attenuates cellular infiltration following spinal cord contusion injury in rat.
Spinal cord injury is accompanied by an initial inflammatory reaction followed by secondary injury that is caused, in part, by apoptosis. Recruitment of leukocytes from the blood compartment to the site of inflammation in the injured spinal cord has been attributed to locally generated chemotactic agents (cytokines and chemokines). In addition to upregulation in the message levels of a number of chemokines, we have found up-regulation in the message levels of several chemokine receptors following spinal cord contusion injury. To reduce the inflammatory response after spinal cord injury, we have blocked the interaction of chemokine receptors with their ligands using the vMIPII chemokine antagonist. Using a rat model of spinal cord contusion injury, we show that continuous infusion of the antagonist for up to 7 days results in a decrease in infiltrating hematogenous cells at the site of injury. Histological evaluation ofthe tissue showed fewer activated macrophages at the site of injury. Concomitantly, reduced neuronal loss and gliosis were observed in the antagonist infused spinal cord. In addition, increased expression of Bcl-2 gene, an endogenous inhibitor of apoptosis, was seen in the antagonist infused spinal cord at 7 days post injury. Morphologically, staining with the bisbenzamide dye Hoechst 33342 showed significantly more apoptotic bodies in the vehicle compared to antagonist infused spinal cord. Our data suggest that chemokine antagonist infusion post-injury results in limiting the inflammatory response following spinal cord contusion injury, thereby attenuating neuronal loss, possibly due to decreased apoptosis. These findings support the contention that disrupting chemokine interactions with their receptors may be an effective approach in reducing the secondary damage after spinal cord injury. Topics: Animals; Apoptosis; Chemokines; Chemokines, CC; Female; Gliosis; Inflammation; Neurons; Rats; Rats, Sprague-Dawley; Receptors, Chemokine; Spinal Cord; Spinal Cord Injuries | 2000 |
In vivo inhibition of CC and CX3C chemokine-induced leukocyte infiltration and attenuation of glomerulonephritis in Wistar-Kyoto (WKY) rats by vMIP-II.
Chemokines play a central role in immune and inflammatory responses. It has been observed recently that certain viruses have evolved molecular piracy and mimicry mechanisms by encoding and synthesizing proteins that interfere with the normal host defense response. One such viral protein, vMIP-II, encoded by human herpesvirus 8, has been identified with in vitro antagonistic activities against CC and CXC chemokine receptors. We report here that vMIP-II has additional antagonistic activity against CX3CR1, the receptor for fractalkine. To investigate the potential therapeutic effect of this broad-spectrum chemokine antagonist, we studied the antiinflammatory activity of vMIP-II in a rat model of experimental glomerulonephritis induced by an antiglomerular basement membrane antibody. vMIP-II potently inhibited monocyte chemoattractant protein 1-, macrophage inflammatory protein 1beta-, RANTES (regulated on activation, normal T cell expressed and secreted)-, and fractalkine-induced chemotaxis of activated leukocytes isolated from nephritic glomeruli, significantly reduced leukocyte infiltration to the glomeruli, and markedly attenuated proteinuria. These results suggest that molecules encoded by some viruses may serve as useful templates for the development of antiinflammatory compounds. Topics: Animals; Antibodies; Basement Membrane; Binding, Competitive; Cell Movement; Chemokines; Chemotaxis; CX3C Chemokine Receptor 1; Disease Models, Animal; Glomerulonephritis; Herpesvirus 8, Human; Immunohistochemistry; Inflammation; Kidney Glomerulus; Leukocytes; Proteinuria; Rats; Rats, Inbred Strains; Receptors, Cytokine; Receptors, HIV; Viral Proteins | 1998 |