vitamin-u has been researched along with Inflammation* in 2 studies
2 other study(ies) available for vitamin-u and Inflammation
Article | Year |
---|---|
Vitamin U prevents valproic acid-induced liver injury through supporting enzymatic antioxidant system and increasing hepatocyte proliferation triggered by inflammation and apoptosis.
The aim of this study was to investigate the cellular mechanisms that cause valproic acid (VPA)-induced liver damage and the therapeutic effect of Vitamin U (Vit U) on these mechanisms. Female Sprague Dawley rats were randomly divided into four groups: intact control animals, animals that received Vit U (50 mg/kg/day), animals given VPA (500 mg/kg/day), and animals given both VPA and Vit U. The rats in the Vit U + VPA group were administered Vit U by gavage an hour before VPA administration every day for 15 days. Liver tissues were evaluated through histopathological, biochemical, immunohistochemical, and Western blotting techniques. Administration of Vit U with VPA resulted in (i) prevention of histopathological changes caused by VPA; (ii) blockage of the decrease in catalase (CAT), glutathione reductase (GR), glutathione peroxidase (GPx), and superoxide dismutase (SOD) activities; prevention of the elevation in gamma-glutamyl transferase (GGT) activity and advanced oxidation protein products (AOPP) level; (iii) increased in the levels of interleukin-1 beta (IL-1β), active caspase-3, and cytoplasmic cytochrome c; (iv) increase in cleaved poly (ADP-ribose) polymerase (PARP) level and decrease in LC3B (II/I) ratio; (v) increase in the number of proliferating cells nuclear antigen (PCNA) positive hepatocytes. These findings show that Vit U prevents liver damage caused by VPA through increasing the antioxidant enzyme capacity and hepatocyte proliferation by triggering inflammation and apoptosis. These findings suggest that Vit U provides its protective effects against VPA-induced liver damage by stimulating homeostasis and regeneration. Topics: Animals; Antioxidants; Apoptosis; Cell Proliferation; Chemical and Drug Induced Liver Injury, Chronic; Female; Hepatocytes; Inflammation; Oxidative Stress; Rats; Rats, Sprague-Dawley; Valproic Acid; Vitamin U | 2021 |
Vitamin U has a protective effect on valproic acid-induced renal damage due to its anti-oxidant, anti-inflammatory, and anti-fibrotic properties.
The aim of present study was to investigate the effect of vitamin U (vit U, S-methylmethionine) on oxidative stress, inflammation, and fibrosis within the context of valproic acid (VPA)-induced renal damage. In this study, female Sprague Dawley rats were randomly divided into four groups: Group I consisted of intact animals, group II was given vit U (50 mg/kg/day, by gavage), group III was given VPA (500 mg/kg/day, intraperitonally), and group IV was given VPA + vit U. The animals were treated by vit U 1 h prior to treatment with VPA every day for 15 days. The following results were obtained in vit U + VPA-treated rats: (i) the protective effect of vit U on renal damage was shown by a significant decrease in histopathological changes and an increase in Na(+)/K(+)-ATPase activity; (ii) anti-oxidant property of vit U was demonstrated by a decrease in malondialdehyde levels and xanthine oxidase activity and an increase in glutathione levels, catalase and superoxide dismutase activities; (iii) anti-inflammatory property of vit U was demonstrated by a decrease in tumor necrosis factor-α, interleukin-1β, monocyte chemoattractant protein-1 levels, and adenosine deaminase activity; (iv) anti-fibrotic effect of vit U was shown by a decrease in transforming growth factor-β, collagen-1 levels, and arginase activity. Collectively, these data show that VPA is a promoter of inflammation, oxidative stress, and fibrosis which resulted in renal damage. Vit U can be proposed as a potential candidate for preventing renal damage which arose during the therapeutic usage of VPA. Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Blotting, Western; Catalase; Collagen Type I; Creatinine; Female; Fibrosis; Glutathione; Glutathione Transferase; Immunoblotting; Inflammation; Kidney; Lipid Peroxidation; Oxidative Stress; Rats, Sprague-Dawley; Superoxide Dismutase; Transforming Growth Factor beta1; Urea; Valproic Acid; Vitamin U | 2016 |