vitamin-k-semiquinone-radical and Myelodysplastic-Syndromes

vitamin-k-semiquinone-radical has been researched along with Myelodysplastic-Syndromes* in 7 studies

Other Studies

7 other study(ies) available for vitamin-k-semiquinone-radical and Myelodysplastic-Syndromes

ArticleYear
Vitamin K antagonists did not increase the risk of myelodysplastic syndrome in a large-scale cohort study.
    Blood, 2021, 08-05, Volume: 138, Issue:5

    Topics: Cohort Studies; Fibrinolytic Agents; Humans; Myelodysplastic Syndromes; Vitamin K

2021
Vitamin K antagonism impairs the bone marrow microenvironment and hematopoiesis.
    Blood, 2019, 07-18, Volume: 134, Issue:3

    Vitamin K antagonists (VKAs) have been used in 1% of the world's population for prophylaxis or treatment of thromboembolic events for 64 years. Impairment of osteoblast function and osteoporosis has been described in patients receiving VKAs. Given the involvement of cells of the bone marrow microenvironment (BMM), such as mesenchymal stem cells (MSCs) and macrophages, as well as other factors such as the extracellular matrix for the maintenance of normal hematopoietic stem cells (HSCs), we investigated a possible effect of VKAs on hematopoiesis via the BMM. Using various transplantation and in vitro assays, we show here that VKAs alter parameters of bone physiology and reduce functional HSCs 8-fold. We implicate impairment of the functional, secreted, vitamin K-dependent, γ-carboxylated form of periostin by macrophages and, to a lesser extent, MSCs of the BMM and integrin β3-AKT signaling in HSCs as at least partly causative of this effect, with VKAs not being directly toxic to HSCs. In patients, VKA use associates with modestly reduced leukocyte and monocyte counts, albeit within the normal reference range. VKAs decrease human HSC engraftment in immunosuppressed mice. Following published examples that alteration of the BMM can lead to hematological malignancies in mice, we describe, without providing a causal link, that the odds of VKA use are higher in patients with vs without a diagnosis of myelodysplastic syndrome (MDS). These results demonstrate that VKA treatment impairs HSC function via impairment of the BMM and the periostin/integrin β3 axis, possibly associating with increased MDS risk.

    Topics: Animals; Anticoagulants; Biomarkers; Bone Marrow Cells; Cell Adhesion Molecules; Cellular Microenvironment; Dose-Response Relationship, Drug; Hematopoiesis; Hematopoietic Stem Cells; Leukocytes; Macrophages; Mice; Myelodysplastic Syndromes; Vitamin K; Warfarin

2019
Vitamin K2 therapy for myelodysplastic syndromes (MDS) and post-MDS acute myeloid leukemia: information through a questionnaire survey of multi-center pilot studies in Japan.
    Leukemia, 2000, Volume: 14, Issue:6

    Topics: Acute Disease; Adult; Aged; Female; Humans; Leukemia, Myeloid; Male; Middle Aged; Multicenter Studies as Topic; Myelodysplastic Syndromes; Pilot Projects; Vitamin K; Vitamin K 2

2000
Vitamin K2 therapy for a patient with myelodysplastic syndrome.
    Leukemia, 1999, Volume: 13, Issue:1

    Topics: Administration, Oral; Aged; Erythroblasts; Hemostatics; Humans; Leukocyte Count; Male; Myelodysplastic Syndromes; Vitamin K

1999
Vitamin K2 induces apoptosis of a novel cell line established from a patient with myelodysplastic syndrome in blastic transformation.
    Leukemia, 1999, Volume: 13, Issue:9

    We have previously reported that vitamin K2 (VK2) has a potent apoptosis inducing activity toward various types of primary cultured leukemia cells including acute myelogenous leukemia arising from myelodysplastic syndromes (MDS). We established a novel cell line, designated MDS-KZ, from a patient with MDS in blastic transformation, and further investigated the effects of VK2 using this novel cell line. MDS-KZ shows complex chromosomal anomaly including -4, 5q-, -7, 13q+, 20q-, consistent with that seen in the original patient. Culture of MDS-KZ cells in RPMI1640 medium containing 10% FBS lead to steady but very slow proliferation with a doubling time of 14 days. However, the cellular growth rate was significantly accelerated in the presence of various growth factors such as granulocyte colony-stimulating factor, stem cell factor, granulocyte-macrophage colony-stimulating factor, interleukin-3, and thrombopoietin. Most of the cultured cells show the morphological features of myeloblasts. They are positive for CD7, CD33, CD34, CD45, CD117, and HLA-DR. However, about 10% of the cells are more mature metamyelocytes and neutrophils with various dysplastic characteristics such as pseudo-Pelger nuclear anomaly and hypersegmentation, suggesting a potential for differentiation in this cell line. As previously reported for cultured primary leukemia cells, exposure to VK2, but not to VK1, resulted in induction of apoptosis of MDS-KZ cells in a dose-dependent manner (IC50: 5 microM). In addition, VK2 treatment induced down-regulation of BCL-2 and up-regulation of BAX protein expression with concomitant activation of caspase-3 (CPP32). A tetrapeptide functioning as antagonist of caspase-3, Ac-DEVD-H, suppressed the VK2-induced inhibition of cell growth, suggesting that caspase-3 is, at least in part, involved in VK2-induced apoptosis. These observations suggest that the MDS-KZ cell line can serve as a model for the study of the molecular mechanisms of VK2-induced apoptosis.

    Topics: Aged; Apoptosis; Caspase 3; Caspases; Cell Line, Transformed; Cytokines; Enzyme Activation; Female; Humans; Lymphocyte Activation; Myelodysplastic Syndromes; Vitamin K

1999
Vitamin K2 selectively induces apoptosis of blastic cells in myelodysplastic syndrome: flow cytometric detection of apoptotic cells using APO2.7 monoclonal antibody.
    Leukemia, 1998, Volume: 12, Issue:9

    We have previously reported that vitamin K2 (VK2) but not VK1 has a potent apoptosis-inducing effect on freshly isolated leukemia cells from patients with various types of leukemia. By multi-color flow cytometric analysis using monoclonal antibody (mAb), APO2.7, which detects mitochondrial 7A6 antigen specifically expressed by cells undergoing apoptosis, we further investigated the apoptosis-inducing effect of VK2 on minor populations of leukemic blast cells in bone marrow from patients with myelodysplastic syndrome (MDS) and overt myeloid leukemia (post-MDS AML). Limiting dilution of CD95 (anti-Fas) mAb-treated apoptotic Jurkat cells with nonapoptotic CTB-1 cells revealed that APO2.7-positive Jurkat cells were consistently detectable by flow cytometry when present at levels of at least 5% in the CTB-1 suspension. In patient samples the gating area for leukemic clone was determined using cell surface antigen-specific mAbs conjugated with either fluorescein isothionate (FITC) or phycoerythrin (PE) and subsequently the cells stained with phycoerythrin cyanine (PE-Cy5)-conjugated APO2.7 mAb were assessed within the gating area of the leukemic clone for monitoring apoptosis. Treatment of the bone marrow mononuclear cells with 3-10 microM of VK2 (menaquinone-3, -4 and -5) in vitro potently induced apoptosis of the leukemic blast cells as compared with the untreated control cells in all 15 MDS patients tested. This effect was more prominent on blastic cells than that on mature myeloid cells such as CD34-/CD33+ gated cells. In addition, VK2 performed much less effectively on CD3-positive lymphoid cells. In contrast to VK2, VK1 did not show apoptosis-inducing activity. These data suggest that VK2 may be used for treatment of patients with MDS in blastic transformation.

    Topics: Antibodies, Monoclonal; Apoptosis; Bone Marrow; Flow Cytometry; Humans; Jurkat Cells; Membrane Proteins; Myelodysplastic Syndromes; Vitamin K

1998
Vitamin K2 and its derivatives induce apoptosis in leukemia cells and enhance the effect of all-trans retinoic acid.
    Leukemia, 1997, Volume: 11, Issue:6

    Geranylgeraniol, a polyprenylalcohol composing the side chain of vitamin K2 (VK2), was previously reported to be a potent inducer of apoptosis in tumor cell lines (Ohzumi H et al, J Biochem 1995; 117: 11-13). We examined the apoptosis-inducing ability of VK2 (menaquinone 3 (MK3), MK4 and MK5) and its derivatives such as phytonadione (VK1), as well as polyprenylalcohols with side chains of various lengths including farnesol (C15-OH; FO), geranylgeraniol (C20-OH; GGO), and geranylfarnesol (C25-OH; GFO) toward leukemia cells in vitro. MK3, MK4, MK5 and GFO (at 10 microM) showed a potent apoptosis-inducing activity for all freshly isolated leukemia cells tested and for leukemia cell lines such as NB4, an acute promyelocytic leukemia (APL)-derived cell line and MDS92, a cell line derived from a patient with myelodysplastic syndrome, although there were some differences depending on the cells tested. In contrast, VK1 showed no effect on any of the leukemia cells. The combination of MK5 plus all-trans retinoic acid (ATRA) resulted in enhanced induction of apoptosis in both freshly isolated APL cells and NB4 cells as compared to each reagent alone. These data suggest the possibility of using VK2 and its derivatives for the treatment of myelogenous leukemias, including APL.

    Topics: Apoptosis; Bone Marrow; Diterpenes; Drug Synergism; Farnesol; Flow Cytometry; Gefarnate; Humans; Leukemia; Leukemia, Myelogenous, Chronic, BCR-ABL Positive; Leukemia, Myeloid; Leukemia, Promyelocytic, Acute; Molecular Structure; Myelodysplastic Syndromes; Structure-Activity Relationship; Tretinoin; Tumor Cells, Cultured; Vitamin K; Vitamin K 1; Vitamin K 2

1997