vitamin-k-semiquinone-radical has been researched along with Mesothelioma* in 2 studies
2 other study(ies) available for vitamin-k-semiquinone-radical and Mesothelioma
Article | Year |
---|---|
Antioxidant defense mechanisms of human mesothelioma and lung adenocarcinoma cells.
The development of drug resistance of tumors is multifactorial and still poorly understood. Some cytotoxic drugs generate free radicals, and, therefore, antioxidant enzymes may contribute to drug resistance. We investigated the levels of manganese superoxide dismutase (Mn SOD), its inducibility, and its protective role against tumor necrosis factor-alpha and cytotoxic drugs (cisplatin, epirubicin, methotrexate, and vindesin) in human pleural mesothelioma (M14K) and pulmonary adenocarcinoma (A549) cells. We also studied other major antioxidant mechanisms in relation to oxidant and drug resistance of these cells. A549 cells were more resistant than M14K cells toward both oxidants (hydrogen peroxide and menadione) and all the cytotoxic drugs tested. M14K cells contained higher basal Mn SOD activity than A549 cells (28.3 +/- 3.4 vs. 1.8 +/- 0.3 U/mg protein), and Mn SOD activity was significantly induced by tumor necrosis factor-alpha only in A549 cells (+524%), but the induction did not offer any protection during subsequent oxidant or drug exposure. Mn SOD was not induced significantly in either of these cell lines by any of the cytotoxic drugs (0.007-2 microM, 48 h) tested when assessed by Northern blotting, Western blotting, or specific activity. A549 cells contained higher catalase activity than M14K cells (7.6 +/- 1.3 vs. 3.6 +/- 0.5 nmol O(2). min(-1). mg protein(-1)). They also contained twofold higher levels of glutathione and higher immunoreactivity of the heavy subunit of gamma-glutamylcysteine synthetase than M14K cells. Experiments with inhibitors of gamma-glutamylcysteine synthetase and catalase supported our conclusion that mechanisms associated with glutathione contribute to the drug resistance of these cells. Topics: Adenocarcinoma; Antioxidants; Catalase; Glutamate-Cysteine Ligase; Glutathione; Humans; Hydrogen Peroxide; Lung Neoplasms; Mesothelioma; Oxidants; RNA, Messenger; Superoxide Dismutase; Tumor Cells, Cultured; Vitamin K | 2000 |
Manganese superoxide dismutase in healthy human pleural mesothelium and in malignant pleural mesothelioma.
We hypothesized that manganese superoxide dismutase (MnSOD), known to be induced in rat mesothelial cells by asbestos fibers, cytokines, and hyperoxia, may also be induced in asbestos-related pleural diseases such as mesothelioma. MnSOD was assessed in healthy human pleural mesothelium (n = 6), in biopsy samples of human pleural mesothelioma (n = 7), in transformed nonmalignant human mesothelial cells (Met5A), and in two human mesothelioma cell lines (M14K and M38K) established from the tumor tissue of mesothelioma patients. There was no MnSOD immunoreactivity in five of the six samples of healthy pleural mesothelium, whereas MnSOD immunoreactivity was high in the tumor cells in all the mesothelioma samples. Northern blotting, immunohistochemistry, Western blotting, and specific activity measurements showed lower MnSOD in the nonmalignant Met5A mesothelial cells than in the M14K and M38K mesothelioma cells. In additional experiments the mesothelial and mesothelioma cells were exposed to menadione, which generates superoxide intracellularly, and to epirubicin, a cytotoxic drug commonly used to treat mesothelioma. The M38K mesothelioma cells were most resistant to menadione and epirubicin when assessed by LDH release or by adenine nucleotide (ATP, ADP, and AMP) depletion. These same cells showed not only the highest MnSOD levels, but also the highest mRNA levels and activities of catalase, whereas glutathione peroxidase and glutathione reductase levels did not differ significantly. We conclude that MnSOD expression is low in healthy human pleural mesothelium and high in human malignant mesothelioma. The most resistant mesothelioma cells contained coordinated induction of MnSOD and catalase. Topics: Adult; Aged; Antibiotics, Antineoplastic; Antioxidants; Biopsy; Cell Line, Transformed; Epirubicin; Epithelial Cells; Free Radical Scavengers; Hemostatics; Humans; Hydrogen Peroxide; Male; Mesothelioma; Middle Aged; Pleura; Pleural Neoplasms; Superoxide Dismutase; Tumor Cells, Cultured; Vitamin K | 1998 |