vitamin-k-semiquinone-radical and Leishmaniasis

vitamin-k-semiquinone-radical has been researched along with Leishmaniasis* in 3 studies

Reviews

1 review(s) available for vitamin-k-semiquinone-radical and Leishmaniasis

ArticleYear
The Possible Role of Selected Vitamins and Minerals in the Therapeutic Outcomes of Leishmaniasis.
    Biological trace element research, 2023, Volume: 201, Issue:4

    Leishmaniasis is a protozoal disease declared as an endemic in areas suffering from severe malnutrition and poverty. The factors associated with poverty like low income, ecological factors, and malnutrition cause disruption in immunity and host defense increasing risk of infection. Altered resistance to infection and host susceptibility are associated with low micronutrient levels in undernourished patients. Malnutrition has been recognized as a poor predictive marker for leishmaniasis, in particular the deficiency of trace elements like zinc, iron, and vitamin A, B, C, D which has a prominent function in the regulation of innate and adaptive immunity, cell proliferation, human physiology, etc. Malnourishment can exacerbate host sensitivity and pathophysiologic intensity to infection in variety of ways, whereas infection can enhance underlying poor nutrition or enhance host vulnerability and sandfly's urge to attack specific hosts. The intensity of leishmaniasis can be influenced by body mass and micronutrient availability in the blood. Vitamin D, C, zinc, and iron are proved effective in inhibiting the growth of leishmaniasis in both amastigote or promastigote forms, either directly or by acting as precursor for a pathway which inhibits the parasite growth. This article elucidates a new perception to the crucial role of micronutrients and their probable role in the therapeutic outcomes of leishmaniasis. Since there is requirement of novel drugs to fight drug resistance and relapse of leishmaniasis, this article may pave way to understand the importance of micronutrients and their role in therapeutic outcomes of leishmaniasis.

    Topics: Humans; Iron; Leishmaniasis; Malnutrition; Micronutrients; Minerals; Trace Elements; Treatment Outcome; Vitamin A; Vitamin K; Vitamins; Zinc

2023

Other Studies

2 other study(ies) available for vitamin-k-semiquinone-radical and Leishmaniasis

ArticleYear
Response of Leishmania chagasi promastigotes to oxidant stress.
    Infection and immunity, 1994, Volume: 62, Issue:11

    At the onset of infection, Leishmania promastigotes are phagocytized by mammalian macrophages. They must survive despite exposure to toxic oxidants such as hydrogen peroxide (H2O2) and superoxide (.O2-) generated during phagocytosis. We investigated the effects of these oxidants on Leishmania chagasi promastigotes and promastigote mechanisms for oxidant resistance. According to spin trapping and electron paramagnetic resonance spectrometry, .O2- could be generated by exposure of promastigotes to the redox-cycling compound menadione. Incubation in either menadione or H2O2 caused a concentration-dependent loss of promastigote viability. However, incubation in sublethal concentrations of H2O2 or menadione caused a stress response in promastigotes. This oxidant-induced response was associated with an increase in the amount of heat shock protein hsp70. Induction of a stress response by exposure of promastigotes either to heat shock or to sublethal oxidants (H2O2 or menadione) caused promastigotes to become more resistant to H2O2 toxicity. Sublethal menadione also caused promastigotes to become more virulent in a BALB/c mouse model of leishmaniasis. We previously correlated H2O2 cytotoxicity for promastigotes with the formation of hydroxyl radical (.OH) from H2O2. However, according to electron paramagnetic resonance spectrometry, the increase in H2O2 resistance after exposure to sublethal oxidants was not associated with diminished generation (i.e., scavenging) of .OH. These data suggest that there is a cross-protective stress response that occurs after exposure of L. chagasi promastigotes to heat shock or to sublethal H2O2 or .O2-, exposures that also occur during natural infection. This response results in increased resistance to H2O2 toxicity and increased virulence for a mammalian host.

    Topics: Animals; Electron Spin Resonance Spectroscopy; HSP70 Heat-Shock Proteins; Hydrogen Peroxide; Leishmania; Leishmaniasis; Mice; Mice, Inbred BALB C; Oxidation-Reduction; Reactive Oxygen Species; Vitamin K

1994
The activity of plumbagin and other electron carriers against Leishmania donovani and Leishmania mexicana amazonensis.
    Annals of tropical medicine and parasitology, 1985, Volume: 79, Issue:6

    Topics: Animals; Antiprotozoal Agents; Chlorpromazine; Clofazimine; Electron Transport; Leishmania donovani; Leishmania mexicana; Leishmaniasis; Leishmaniasis, Visceral; Methylene Blue; Methylphenazonium Methosulfate; Mice; Mice, Inbred BALB C; Naphthoquinones; Nifurtimox; Vitamin K

1985