vicenin-ii and Inflammation

vicenin-ii has been researched along with Inflammation* in 4 studies

Other Studies

4 other study(ies) available for vicenin-ii and Inflammation

ArticleYear
Hepatoprotective effects of vicenin-2 and scolymoside through the modulation of inflammatory pathways.
    Journal of natural medicines, 2020, Volume: 74, Issue:1

    The aim of this study was to investigate the effects of two structurally related flavonoids found in Cyclopia subternata, vicenin-2 (VCN) and scolymoside (SCL) on lipopolysaccharide (LPS)-induced liver failure in mice and to elucidate underlying mechanisms. Mice were treated intravenously with VCN or SCL at 12 h after LPS treatment. LPS significantly increased mortality, serum levels of alanine transaminase, aspartate transaminase, and inflammatory cytokines, and toll-like receptor 4 (TLR4) protein expression; these effects of LPS were inhibited by VCN or SCL. It also attenuated the LPS-induced activation of myeloid differentiation primary response gene 88 and TLR-associated activator of interferon-dependent signaling pathways of the TLR system. Our results suggest that VCN or SCL protects against LPS-induced liver damage by inhibiting the TLR-mediated inflammatory pathway, indicating its potential to treat liver diseases.

    Topics: Animals; Apigenin; Glucosides; Inflammation; Lipopolysaccharides; Luteolin; Male; Mice; Signal Transduction

2020
TET-2 up-regulation is associated with the anti-inflammatory action of Vicenin-2.
    Cytokine, 2018, Volume: 108

    Vicenin-2, a C-glycoside flavone that is present in many plant sources, exerts potent anti-inflammatory effects in a number of cell and animal models of inflammation. Ten-eleven translocation (TET)-2 has recently gained considerable attention due to the role it plays in regulating the inflammasome. We studied the ability of Vicenin-2 (V-2) to regulate a range of lipopolysaccharide (LPS) stimulated inflammatory activities in PMA-differentiated THP-1 cells and human primary mononuclear cells. We also investigated the action of V-2 on the secretion of NLRP3 inflammasome regulated cytokines (IL-1β and IL-18) by ELISA, and determined if V-2 can regulate the expression of NLRP3, IL-10, IL-1Ra and TET-2. The effect of V-2 on NF-κB signalling was investigated by fluorescence microscopy and gene reporter assay. Additionally, the effect of V-2 on LPS-induced phosphorylation of IKB-α was also investigated by Western blot analysis. V-2 down-regulated LPS-induced secretion of proinflammatory cytokines (TNF-α and IL-1β), in both THP-1 and primary mononuclear cells. V-2 also decreased the LPS-stimulated secretion of IL-18 in THP-1 cells. V-2 significantly down-regulated TNF-α induced NF-κB reporter activity in HEK293T transfected cells and attenuated IKB-α phosphorylation in THP-1 cells. V-2 treatment also induced enhanced nuclear staining of the p50 subunit and reduced p65 subunit of NF-κB. V-2 treatment alone increased the expression of anti-inflammatory cytokine, IL-10, and the regulator of the inflammasome; IL-1Ra, in the presence of LPS. V-2 also significantly decreased LPS-induced NLRP3 expression while concomitantly increasing TET-2 expression. This study demonstrates that the anti-inflammatory actions of V-2 are associated not only with increased IL-10 and IL-1Ra expression, but also with TET-2 up-regulation. Further work is required to establish if the effects of V-2 can be definitively linked to TET-2 activity and that these actions are mirrored in a range of relevant cell types.

    Topics: Anti-Inflammatory Agents; Apigenin; Cytokines; Dioxygenases; DNA-Binding Proteins; Down-Regulation; Gene Expression Regulation; Glucosides; HEK293 Cells; Humans; Inflammasomes; Inflammation; Lipopolysaccharides; Monocytes; NLR Family, Pyrin Domain-Containing 3 Protein; Phosphorylation; Proto-Oncogene Proteins; Signal Transduction; THP-1 Cells; Up-Regulation

2018
Vicenin-2 and scolymoside inhibit high-glucose-induced vascular inflammation in vitro and in vivo.
    Canadian journal of physiology and pharmacology, 2016, Volume: 94, Issue:3

    The vascular inflammatory process has been suggested to play a key role in the initiation and progression of atherosclerosis, a major complication of diabetes mellitus. Thus, in this study, we attempted to determine whether 2 structurally related flavonoids found in Cyclopia subternata, vicenin-2 and scolymoside, can suppress high-glucose (HG)-induced vascular inflammatory processes in human umbilical vein endothelial cells (HUVECs) and mice. The effects of vicenin-2 and scolymoside on HG-induced vascular inflammation were determined by measuring vascular permeability, leukocyte adhesion and migration, cell adhesion molecule (CAM) expression levels, and reactive oxygen species (ROS) formation. In addition, the anti-inflammation mechanism was investigated using immunofluorescence staining and Western blotting. The data showed that HG markedly increased vascular permeability, monocyte adhesion, expression of CAMs, formation of reactive oxygen species (ROS), and activation of nuclear factor (NF)-κB. Remarkably, pretreatment with vicenin-2 and scolymoside attenuated all of the above-mentioned vascular inflammatory effects of HG. HG-induced vascular inflammatory responses are critical events underlying the development of various diabetic complications; therefore, our results suggest that vicenin-2 and scolymoside have significant therapeutic benefits against diabetic complications and atherosclerosis.

    Topics: Animals; Anti-Inflammatory Agents; Apigenin; Capillary Permeability; Cell Adhesion; Cell Adhesion Molecules; Cells, Cultured; Flavonoids; Glucose; Glucosides; Human Umbilical Vein Endothelial Cells; Humans; Inflammation; Inflammation Mediators; Luteolin; Male; Mice; Mice, Inbred C57BL; Monocytes; NF-kappa B; Reactive Oxygen Species

2016
Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
    Current protocols in cytometry, 2010, Volume: Chapter 13

    This protocol describes microsphere-based protease assays for use in flow cytometry and high-throughput screening. This platform measures a loss of fluorescence from the surface of a microsphere due to the cleavage of an attached fluorescent protease substrate by a suitable protease enzyme. The assay format can be adapted to any site or protein-specific protease of interest and results can be measured in both real time and as endpoint fluorescence assays on a flow cytometer. Endpoint assays are easily adapted to microplate format for flow cytometry high-throughput analysis and inhibitor screening.

    Topics: Animals; Biotinylation; Flow Cytometry; Fluorescence Resonance Energy Transfer; Green Fluorescent Proteins; High-Throughput Screening Assays; Humans; Inflammation; Kinetics; Microspheres; Peptide Hydrolases; Peptides; Reproducibility of Results; Temperature

2010