verproside and Disease-Models--Animal

verproside has been researched along with Disease-Models--Animal* in 2 studies

Other Studies

2 other study(ies) available for verproside and Disease-Models--Animal

ArticleYear
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Suppressive effect of verproside isolated from Pseudolysimachion longifolium on airway inflammation in a mouse model of allergic asthma.
    International immunopharmacology, 2006, Volume: 6, Issue:6

    Allergic inflammation of the airways has a critical role in asthma development. We investigated a suppressive effect of verproside (3,4-dihydroxy catalpol) isolated from the extract of Pseudolysimachion longifolium on asthmatic parameters--such as immunoglobulin E (IgE) level, cytokine release, eosinophilia, airway hyperresponsiveness and mucus hypersecretion--in an OVA-sensitized/challenged mouse model. Verproside significantly inhibited the increase of total IgE and the cytokines IL-4 and IL-13 in plasma and bronchoalveolar lavage fluid, and also effectively suppressed airway hyperresponsiveness, eosinophilia and mucus hypersecretion in OVA-induced asthmatic mice. The efficacy of verproside was comparable to montelukast, an anti-asthmatic drug that is currently available. These results suggest that verproside could be a major marker in herbal medicines that are used for asthma treatment, and could also act as a lead for anti-asthmatic drugs.

    Topics: Acetates; Animals; Anti-Asthmatic Agents; Asthma; Bronchoalveolar Lavage Fluid; Cyclopropanes; Disease Models, Animal; Female; Glucosides; Immunoglobulin E; Interleukin-13; Interleukin-4; Iridoid Glucosides; Iridoids; Lung; Methacholine Chloride; Mice; Mice, Inbred BALB C; Molecular Structure; Mucus; Ovalbumin; Plant Extracts; Pneumonia; Pulmonary Eosinophilia; Quinolines; Sulfides; Veronica

2006