Page last updated: 2024-08-24

verapamil hydrochloride and Malaria

verapamil hydrochloride has been researched along with Malaria in 3 studies

Research

Studies (3)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's0 (0.00)18.2507
2000's0 (0.00)29.6817
2010's3 (100.00)24.3611
2020's0 (0.00)2.80

Authors

AuthorsStudies
Bathurst, I; Burrows, JN; Charman, SA; Cross, RM; Flanigan, DL; Fronczek, FR; Guida, WC; Kyle, DE; LaCrue, AN; Maignan, JR; Manetsch, R; Monastyrskyi, A; Mutka, TS; Sáenz, FE; Shackleford, DM; White, KL; Wojtas, L1
Chibale, K; Egan, TJ; Hunter, R; Joshi, MC; Ndove, J; Nsumiwa, S; Okombo, J; Taylor, D; Wiesner, L1
Bezuidenhout, B; Birkholtz, LM; Chibale, K; Churchyard, A; Coetzer, TL; Egan, TJ; Fontinha, D; Gibhard, L; Lauterbach, S; Mayoka, G; Njoroge, M; Okombo, J; Prudêncio, M; Reader, J; Sanches-Vaz, M; van der Watt, M; Wittlin, S; Yeates, C1

Other Studies

3 other study(ies) available for verapamil hydrochloride and Malaria

ArticleYear
Orally bioavailable 6-chloro-7-methoxy-4(1H)-quinolones efficacious against multiple stages of Plasmodium.
    Journal of medicinal chemistry, 2014, Nov-13, Volume: 57, Issue:21

    Topics: Animals; Antimalarials; Humans; Inhibitory Concentration 50; Malaria; Mice; Microsomes, Liver; Parasitemia; Plasmodium; Plasmodium berghei; Quinolones; Structure-Activity Relationship

2014
4-Aminoquinoline Antimalarials Containing a Benzylmethylpyridylmethylamine Group Are Active against Drug Resistant Plasmodium falciparum and Exhibit Oral Activity in Mice.
    Journal of medicinal chemistry, 2017, 12-28, Volume: 60, Issue:24

    Topics: Administration, Oral; Aminopyridines; Aminoquinolines; Animals; Antimalarials; Cell Membrane Permeability; Chloroquine; CHO Cells; Cricetulus; Drug Evaluation, Preclinical; Drug Resistance, Microbial; ERG1 Potassium Channel; Hemeproteins; Humans; Malaria; Male; Mice, Inbred BALB C; Plasmodium berghei; Plasmodium falciparum; Solubility; Structure-Activity Relationship

2017
Structure-Activity Relationship Studies and Plasmodium Life Cycle Profiling Identifies Pan-Active N-Aryl-3-trifluoromethyl Pyrido[1,2- a]benzimidazoles Which Are Efficacious in an in Vivo Mouse Model of Malaria.
    Journal of medicinal chemistry, 2019, 01-24, Volume: 62, Issue:2

    Topics: Animals; Antimalarials; Benzimidazoles; Disease Models, Animal; Drug Design; ERG1 Potassium Channel; Half-Life; Hemeproteins; Life Cycle Stages; Malaria; Mice; Mice, Inbred C57BL; Plasmodium; Structure-Activity Relationship; Survival Rate

2019