vendex has been researched along with Joint-Deformities--Acquired* in 3 studies
1 review(s) available for vendex and Joint-Deformities--Acquired
Article | Year |
---|---|
Varus knee osteoarthritis: whence the varus?
Topics: Bone Malalignment; Humans; Joint Deformities, Acquired; Knee Joint; Osteoarthritis, Knee; Stress, Mechanical; Torque | 2003 |
2 other study(ies) available for vendex and Joint-Deformities--Acquired
Article | Year |
---|---|
Effects of foot orthoses and valgus bracing on the knee adduction moment and medial joint load during gait.
Lateral shoe wedges and valgus knee braces are designed to decrease the force acting in the medial knee compartment by reducing the external adduction moment applied at the knee. The biomechanical changes introduced by these orthoses can be relatively small. Computer modeling and simulation offers an alternative approach for assessing the biomechanical performance of these devices.. A three-dimensional model of the lower-limb was used to calculate muscle, ligament, and joint loading at the knee during gait. A lateral shoe wedge was simulated by moving the center of pressure of the ground reaction force up to 5mm laterally. A valgus knee brace was simulated by applying abduction moments of up to 12 Nm at the knee.. Knee adduction moment and medial compartment load decreased linearly with lateral displacement of the center of pressure of the ground reaction force. A 1 mm displacement of the center of pressure decreased the peak knee adduction moment by 2%, while the peak medial compartment load was reduced by 1%. Knee adduction moment and medial compartment force also decreased linearly with valgus moments applied about the knee. A 1 Nm increase in brace moment decreased the peak knee adduction moment by 3%, while the peak medial compartment load was reduced by 1%.. Changes in knee joint loading due to lateral shoe wedges and valgus bracing are small and may be difficult to measure by conventional gait analysis methods. The relationships between lateral shift in the center of pressure of the ground force, valgus brace moment, knee adduction moment, and medial joint load can be quantified and explained using computer modeling and simulation. These relationships may serve as a useful guide for evaluating the biomechanical efficacy of a generic wedge insole or knee brace. Topics: Braces; Computer Simulation; Foot; Gait; Humans; Joint Deformities, Acquired; Knee Joint; Models, Biological; Muscle Contraction; Orthotic Devices; Torque; Weight-Bearing | 2008 |
Simulation of progressive deformities in adolescent idiopathic scoliosis using a biomechanical model integrating vertebral growth modulation.
While the etiology and pathogenesis of adolescent idiopathic scoliosis are still not well understood, it is generally recognized that it progresses within a biomechanical process involving asymmetrical loading of the spine and vertebral growth modulation. This study intends to develop a finite element model incorporating vertebral growth and growth modulation in order to represent the progression of scoliotic deformities. The biomechanical model was based on experimental and clinical observations, and was formulated with variables integrating a biomechanical stimulus of growth modulation along directions perpendicular (x) and parallel (y, z) to the growth plates, a sensitivity factor beta to that stimulus and time. It was integrated into a finite element model of the thoracic and lumbar spine, which was personalized to the geometry of a female subject without spinal deformity. An imbalance of 2 mm in the right direction at the 8th thoracic vertebra was imposed and two simulations were performed: one with only growth modulation perpendicular to growth plates (Sim1), and the other one with additional components in the transverse plane (Sim2). Semi-quantitative characterization of the scoliotic deformities at each growth cycle was made using regional scoliotic descriptors (thoracic Cobb angle and kyphosis) and local scoliotic descriptors (wedging angle and axial rotation of the thoracic apical vertebra). In all simulations, spinal profiles corresponded to clinically observable configurations. The Cobb angle increased non-linearly from 0.3 degree to 34 degrees (Sim1) and 20 degrees (Sim2) from the first to last growth cycle, adequately reproducing the amplifying thoracic scoliotic curve. The sagittal thoracic profile (kyphosis) remained quite constant. Similarly to clinical and experimental observations, vertebral wedging angle of the thoracic apex progressed from 2.6 degrees to 10.7 degrees (Sim1) and 7.8 degrees (Sim2) with curve progression. Concomitantly, vertebral rotation of the thoracic apex increased of 10 degrees (Sim1) and 6 degrees (Sim2) clockwise, adequately reproducing the evolution of axial rotation reported in several studies. Similar trends but of lesser magnitude (Sim2) suggests that growth modulation parallel to growth plates tend to counteract the growth modulation effects in longitudinal direction. Overall, the developed model adequately represents the self-sustaining progression of vertebral and spinal scoliotic deformities. This study d Topics: Adolescent; Bone Remodeling; Computer Simulation; Disease Progression; Elasticity; Feasibility Studies; Female; Humans; Joint Deformities, Acquired; Lumbar Vertebrae; Models, Biological; Muscle Contraction; Muscle, Skeletal; Scoliosis; Stress, Mechanical; Thoracic Vertebrae; Torque; Weight-Bearing | 2002 |