vendex and Fractures--Ununited

vendex has been researched along with Fractures--Ununited* in 2 studies

Other Studies

2 other study(ies) available for vendex and Fractures--Ununited

ArticleYear
Structural and biomechanical responses of osseous healing: a novel murine nonunion model.
    Journal of orthopaedics and traumatology : official journal of the Italian Society of Orthopaedics and Traumatology, 2013, Volume: 14, Issue:4

    Understanding the biological mechanisms of why certain fractures are at risk for delayed healing or nonunion requires translational animal models that take advantage of transgenic and other genetic manipulation technologies. Reliable murine nonunion models can be an important tool to understand the biology of nonunion. In this study, we report the results of a recently established model for creating critical defects that lead to atrophic nonunions based on a unique fracture fixation technique.. Subcritical (0.6 mm long) and critical (1.6 mm long) defects were created in femurs of 10-week-old double transgenic (Col1/Col2) mice and stabilized using a custom-designed plate and four screws. Four groups were used: normal, sham, subcritical, and critical. Histology (n = 3 for each group) was analyzed at 2 and 5 weeks, and micro-computed tomography (μCT) and torsional biomechanics (n = 12 for each group) were analyzed at 5 weeks.. Subcritical defects showed healing at 2 weeks and were completely healed by 5 weeks, with biomechanical properties not significantly different from normal controls. However, critical defects showed no healing by histology or μCT. These nonunion fractures also displayed no torsional stiffness or strength in 10 of 12 cases.. Our murine fracture model creates reproducible and reliable nonunions and can serve as an ideal platform for studying molecular pathways to contrast healing versus nonhealing events and for evaluating innovative therapeutic approaches to promote healing of a challenging osseous injury.

    Topics: Animals; Biomechanical Phenomena; Bone Plates; Bone Screws; Disease Models, Animal; Femoral Fractures; Fracture Healing; Fractures, Ununited; Internal Fixators; Male; Mice; Random Allocation; Torque; X-Ray Microtomography

2013
Removal technique for cold-welded titanium locking screws.
    Injury, 2011, Volume: 42, Issue:11

    Topics: Bone Screws; Device Removal; Fractures, Ununited; Humans; Male; Middle Aged; Prosthesis Failure; Tibial Fractures; Titanium; Torque

2011