vendex has been researched along with Cartilage-Diseases* in 3 studies
3 other study(ies) available for vendex and Cartilage-Diseases
Article | Year |
---|---|
Relationship between quadriceps strength and patellofemoral joint chondral lesions after anterior cruciate ligament reconstruction.
The incidence of the patellofemoral joint chondral lesions after anterior cruciate ligament reconstruction (ACLR) is disturbingly high. Few studies have assessed the factors affecting patellofemoral joint chondral lesions postoperatively.. The recovery of quadriceps strength after ACLR could be associated with patellofemoral joint cartilage damage.. Cohort study; Level of evidence, 3.. A total of 88 patients who underwent arthroscopic anatomic double-bundle ACLR with hamstring autografts received second-look arthroscopy at the time of metal staple removal at an average of 24.1 months (range, 12-51 months) postoperatively. All patients underwent standardized isokinetic strength testing for bilateral quadriceps and hamstrings 1 to 2 days before second-look arthroscopy. The patients were divided into 2 groups: Patients in group 1 had a ≥20% deficit on the peak torque measures for quadriceps compared with that of the contralateral knee, whereas those in group 2 had a <20% deficit on peak torque. Cartilage status at the patellofemoral joint and tibiofemoral joint were evaluated by second-look arthroscopy and the Outerbridge classification. Other assessments included the International Knee Documentation Committee (IKDC) score, Tegner and Lysholm scores, side-to-side difference on KT-2000 arthrometer, and range of motion.. There were 42 patients included in group 1 and 46 patients in group 2. The mean postoperative quadriceps peak torque of the involved knee compared with the contralateral knee was 70% (range, 57%-80%) in group 1 and 95% (range, 81%-116%) in group 2. For all patients, a significant worsening was seen in the patellar and trochlear cartilage (P = .030 and <.001, respectively) but not at the medial or lateral tibiofemoral joint after ACLR. A significant worsening in the status of both patellar and trochlear cartilage was seen after ACLR in group 1 (P = .013 and =.011, respectively) and of trochlear cartilage in group 2 (P = .006). Significantly fewer severe chondral lesions of the patella were found in group 2 than in group 1 (proportion of patients whose cartilage grade worsened: 26% vs 48%, P < .05; difference in cartilage grade: 0.09 vs 0.62, P < .05). There was no significant difference for trochlear chondral worsening between the 2 groups. No significant differences were detected between the 2 groups in terms of hamstring strength; Lysholm, Tegner, and IKDC scores; KT-2000 arthrometer anterior laxity; or range of motion.. Greater than 80% recovery of quadriceps strength after ACLR is associated with less severe patellar cartilage damage at short-term follow-up. Topics: Adolescent; Adult; Anterior Cruciate Ligament Reconstruction; Arthroscopy; Autografts; Cartilage Diseases; Cartilage, Articular; Cohort Studies; Device Removal; Exercise Therapy; Female; Humans; Knee Joint; Male; Patella; Patellofemoral Joint; Postoperative Complications; Quadriceps Muscle; Range of Motion, Articular; Recovery of Function; Second-Look Surgery; Tendons; Torque; Transplantation, Autologous; Young Adult | 2015 |
Isokinetic knee extensor strength deficit following matrix-induced autologous chondrocyte implantation.
Autologous chondrocyte implantation has become an established technique for addressing knee cartilage defects. Despite reported improvement in pain and regeneration of hyaline-like repair tissue, little has been reported on the recovery of knee strength.. Knee strength assessment was undertaken in 60 patients at 5 years following autologous chondrocyte implantation. Using an isokinetic dynamometer, and during isokinetic knee extension and flexion angular velocities of 60°, 90° and 120°/s, the peak torque, torque at 45° of knee flexion and hamstrings/quadriceps ratio was obtained, in both the operated and non-operated limbs. Pain at the time of assessment was obtained. Independent sample t-tests were used to assess differences in the operated and non-operated sides.. There were no significant differences (p>0.05) between the operated and non-operated legs in the peak knee flexor torque or knee flexor torque at a knee flexion angle of 45°, at all angular velocities (60°, 90° and 120°/s). While the peak knee extensor torque was less in the operated leg at all angular velocities, these differences were not significant (p>0.05). However, a significantly reduced (p<0.05) knee extensor torque at a knee flexion angle of 45°, was observed at all speeds.. While patients had recovered their knee flexor strength, they still demonstrated a reduced knee extensor strength profile at 5 years. This demonstrates that the early supervised rehabilitation phase following autologous chondrocyte implantation is not sufficient to restore long-term knee strength, and ongoing patient advice and rehabilitation is required extending beyond this early period. It is unknown how this prolonged reduction in strength may affect long-term graft outcome. Topics: Adolescent; Adult; Biomechanical Phenomena; Cartilage; Cartilage Diseases; Cell Transplantation; Chondrocytes; Female; Humans; Kinetics; Knee; Knee Joint; Male; Middle Aged; Orthopedic Procedures; Pain; Regeneration; Torque; Transplantation, Autologous | 2012 |
Ulnohumeral chondral and ligamentous overload: biomechanical correlation for posteromedial chondromalacia of the elbow in throwing athletes.
Previous studies have documented increased posteromedial contact forces with the elbow at lower flexion angles associated with valgus extension overload; however, the authors believe that posteromedial elbow impingement in association with valgus laxity is a complex pathological process that may occur throughout the entire throwing motion in the form of ulnohumeral chondral and ligamentous overload.. Valgus laxity with the elbow at 90° of flexion may lead to chondromalacia secondary to a subtle shift in the contact point between the tip of the olecranon and the distal humeral trochlea.. Controlled laboratory study.. Six fresh human cadaveric elbows were dissected and subjected to a static valgus load. Pressure-sensitive Fuji film measured the contact pressure, contact area, and shift in contact area across the posteromedial elbow before and after sectioning the anterior bundle of the ulnar collateral ligament.. The contact pressure between the tip of the olecranon process and the medial crista of the posterior humeral trochlea significantly increased, from an average of 0.27 ± 0.06 kg/cm² to 0.40 ± 0.08 kg/cm². The contact area also significantly decreased, from an average of 30.34 ± 9.17 mm² to 24.59 ± 6.44 mm², and shifted medially on the medial humeral crista, which corresponds to the position of the posteromedial chondral lesions that was observed in throwing athletes in the authors' clinical practice.. While simulating the early acceleration phase of the throwing motion with the elbow in 90° of flexion, the results illustrate that abnormal contact may occur as a result of valgus laxity through increased contact pressures across the posteromedial elbow between the medial tip of the olecranon and medial crista of the humeral trochlea. In addition, congruency of the ulnohumeral joint changed, as there was a statistically significant medial shift of the olecranon on the posterior humeral trochlea with the elbow at 90° of flexion after sectioning the anterior bundle of the ulnar collateral ligament.. In the throwing athlete who continues the repetitive, throwing motion despite valgus laxity from ulnar collateral ligament insufficiency, the authors believe that these results provide a plausible mechanism for injury throughout the entire throwing motion secondary to ulnohumeral chondral and ligamentous overload. As throwing athletes may produce a tremendous amount of force and subsequent chondromalacia within the posteromedial aspect of the elbow, the findings of this study illustrate the importance of prompt clinical recognition of ulnar collateral ligament insufficiency. Topics: Athletic Injuries; Biomechanical Phenomena; Cadaver; Cartilage Diseases; Chondrocytes; Humans; Humerus; Olecranon Process; Torque; Ulna | 2010 |