vb-201 has been researched along with Disease-Models--Animal* in 5 studies
1 review(s) available for vb-201 and Disease-Models--Animal
Article | Year |
---|---|
Modified phospholipids as anti-inflammatory compounds.
Oxidized phospholipids (OxPLs) are abundantly found at sites of inflammation and are considered to play an active role in the modulation of the immune response. Whereas most studies attributed a proinflammatory role to OxPLs, recent studies demonstrate that some products of phospholipid oxidation may in fact exhibit anti-inflammatory properties. This study summarizes the proinflammatory and anti-inflammatory properties of OxPLs and sheds light on the therapeutic potential of OxPL derivatives or analogs for treatment of chronic inflammatory disorders.. OxPLs may inhibit activation of several Toll-like receptors and can epigenetically reduce the capacity of dendritic cells to function as mature, fully functional immunostimulatory cells. These data demonstrate that OxPLs can induce anti-inflammatory effects. Moreover, VB-201, an orally available synthetic phospholipid analog of the Lecinoxoid family, was found to attenuate inflammation in various preclinical animal models and is currently employed in a phase II clinical trial in psoriasis.. Chemical or biological modifications of phospholipids yield various products, some of which may exhibit anti-inflammatory properties. Identification of such species and generation of more stable/potent anti-inflammatory OxPL variants may represent a novel approach for the treatment of immune-mediated diseases such as psoriasis, atherosclerosis, multiple sclerosis and rheumatoid arthritis. Topics: Animals; Anti-Inflammatory Agents; Arthritis, Rheumatoid; Atherosclerosis; Dendritic Cells; Disease Models, Animal; Epigenesis, Genetic; Glycerylphosphorylcholine; Humans; Inflammation; Mice; Multiple Sclerosis; Oxidation-Reduction; Phospholipids; Psoriasis; Rabbits; Signal Transduction; Toll-Like Receptors | 2010 |
4 other study(ies) available for vb-201 and Disease-Models--Animal
Article | Year |
---|---|
Treatment with lecinoxoids attenuates focal and segmental glomerulosclerosis development in nephrectomized rats.
Focal segmental glomerulosclerosis (FSGS) is a scarring process associated with chronic low-grade inflammation ascribed to toll-like receptor (TLR) activation and monocyte migration. We developed synthetic, small-molecule lecinoxoids, VB-201 and VB-703, that differentially inhibit TLR-2- and TLR-4-mediated activation and monocyte migration. The efficacy of anti-inflammatory lecinoxoid treatment on FSGS development was explored using a 5/6 nephrectomy rat model. Five-sixths of nephrectomized rats were treated with lecinoxoids VB-201, VB-703 or PBS, for 7 weeks. Upon sacrifice, albumin/creatinine ratio, glomerulosclerosis, fibrosis-related gene expression and the number of glomerular and interstitial monocyte were evaluated. Treatment of nephrectomized rats with lecinoxoids ameliorated glomerulosclerosis. The percentage of damaged glomeruli, glomerular sclerosis and glomeruli fibrotic score was significantly reduced following VB-201 and VB-703 treatment. VB-703 attenuated the expression of fibrosis hallmark genes collagen, fibronectin (FN) and transforming growth factor β (TGF-β) in kidneys and improved albumin/creatinine ratio with higher efficacy than did VB-201, but only VB-201 significantly reduced the number of glomerular and interstitial monocytes. These results indicate that treatment with TLR-2, and more prominently, TLR-4 antagonizing lecinoxioids, is sufficient to significantly inhibit FSGS. Moreover, inhibiting monocyte migration can also contribute to treatment of FSGS. Our data demonstrate that targeting TLR-2-TLR-4 and/or monocyte migration directly affects the priming phase of fibrosis and may consequently perturb disease parthogenesis. Topics: Animals; Blood Cells; Collagen; Disease Models, Animal; Fibronectins; Glomerulosclerosis, Focal Segmental; Glycerophosphates; Glycerylphosphorylcholine; Kidney; Macrophages; Male; Monocytes; Nephrectomy; Podocytes; Pyridinium Compounds; Random Allocation; Rats; Rats, Sprague-Dawley; Toll-Like Receptor 2; Toll-Like Receptor 4; Transforming Growth Factor beta | 2019 |
Treatment with Oxidized Phospholipids Directly Inhibits Nonalcoholic Steatohepatitis and Liver Fibrosis Without Affecting Steatosis.
Previous studies demonstrated that toll-like receptors 4 and 2 (TLR-4 and TLR-2), which are expressed on liver-resident Kupffer, hepatic stellate cells, and circulating monocytes, play a role in nonalcoholic fatty liver disease. Lecinoxoids are oxidized phospholipids that antagonize TLR-2- and TLR-4-mediated activation of innate immune cells and inhibit monocyte migration. In this study, we tested the effect of two functionally different lecinoxoids on the development of nonalcoholic steatohepatitis and liver fibrosis in a mouse model.. Two-day-old C57BL/6 mice were injected with streptozotocin and fed a high-fat diet from Week 4 after birth. At Week 6 post-birth, lecinoxoids VB-201 or VB-703 were given orally, once daily, for 3 weeks. Telmisartan was administered orally, once daily, for 3 weeks, as positive control. At experiment conclusion, biochemical indices were evaluated. HE stain and quantitative PCR were used to determine the extent of steatosis and steatohepatitis, and Sirius red stain was used to assess liver fibrosis.. Treatment with lecinoxoids did not alter the concentration of blood glucose, liver triglycerides, or steatosis compared with solvent-treated mice. However, whereas VB-201 inhibited the development of fibrosis and, to some extent, liver inflammation, VB-703 significantly lessened both liver inflammation and fibrosis.. This study indicates that using lecinoxoids to antagonize TLR-2, and more prominently TLR-4, is sufficient to significantly inhibit nonalcoholic steatohepatitis and liver fibrosis. Inhibiting monocyte migration with lecinoxoids that are relatively weak TLR-4 antagonists may alter liver fibrosis and to some extent nonalcoholic steatohepatitis. Topics: Animals; Antihypertensive Agents; Benzimidazoles; Benzoates; Blood Glucose; Blotting, Western; Cell Movement; Cytokines; Dendritic Cells; Diabetes Mellitus, Experimental; Diet, High-Fat; Disease Models, Animal; Enzyme-Linked Immunosorbent Assay; Glycerophosphates; Glycerylphosphorylcholine; Hepatic Stellate Cells; Humans; Inflammation; Kupffer Cells; Liver; Liver Cirrhosis; Mice; Mice, Inbred C57BL; Monocytes; Non-alcoholic Fatty Liver Disease; Phospholipids; Pyridinium Compounds; Real-Time Polymerase Chain Reaction; Telmisartan; Toll-Like Receptor 2; Toll-Like Receptor 4; Triglycerides | 2016 |
Inhibition of monocyte chemotaxis by VB-201, a small molecule lecinoxoid, hinders atherosclerosis development in ApoE⁻/⁻ mice.
Monocytes are motile cells which sense inflammatory stimuli and subsequently migrate to sites of inflammation. Key players in host defense, monocytes have nevertheless been implicated as requisite mediators of several chronic inflammatory diseases. Inhibition of monocyte chemotaxis is therefore an attractive anti-inflammatory strategy. Oxidized phospholipids (OxPL) are native regulators of inflammation, yet their direct effect on monocyte chemotaxis is poorly defined. In this study, we investigated the direct effect of natural and synthetic phospholipids on monocyte chemotaxis.. Exploring various phospholipids using in vitro chemotaxis assays, we found that the natural phospholipid 1-palmitoyl-2-glutaryl phosphatidylcholine (PGPC) can decrease monocyte chemotaxis by 50%, while other tested OxPL had no effect. We generated a library of synthetic OxPL designated lecinoxoids, which was screened for anti-inflammatory properties.. VB-201, a small-molecule lecinoxoid, exhibited up to 90% inhibition of monocyte chemotaxis in vitro. Molecular analysis revealed that the effect of VB-201 was not restricted to a specific chemotactic ligand or receptor, and resulted from inhibition of signaling pathways required for monocyte chemotaxis. Interestingly, VB-201 did not inhibit monocyte adhesion or phagocytosis and had no effect on chemotaxis of CD4(+) T-cells or neutrophils. In vivo, oral treatment with VB-201 reduced monocyte migration in a peritonitis model and inhibited atheroma development in ApoE(-/-) mice, without affecting cholesterol or triglyceride levels. Our findings highlight a novel role played by native and synthetic phospholipids in regulation of monocyte chemotaxis. The data strengthen the involvement of phospholipids as key signaling molecules in inflammatory settings and demonstrate their potential therapeutic applicability. Topics: Animals; Apolipoproteins E; Atherosclerosis; Cells, Cultured; Chemotaxis; Cholesterol; Disease Models, Animal; Female; Flow Cytometry; Glycerylphosphorylcholine; Humans; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Monocytes; Peritonitis; Receptors, Chemokine; Signal Transduction; Triglycerides; Vasculitis | 2013 |
A Lecinoxoid, an oxidized phospholipid small molecule, constrains CNS autoimmune disease.
Oxidized phospholipids (Ox-PLs) are generated in abundance at sites of inflammation. Recent studies have indicated that Ox-PLs may also exhibit anti-inflammatory activities. In this study, we investigated the beneficial effect of VB-201, a pure synthetic Ox-PL analog that we synthesized, on the development of a central nervous system (CNS) autoimmune inflammatory disease, in vivo. Oral administration of VB-201 ameliorated the severity of experimental autoimmune encephalomyelitis (EAE) induced by myelin oligodendrocyte glycoprotein (MOG) peptide MOG35-55, and restrained the encephalogenicity of MOG35-55-specific T-cells. Our data presents a novel prospect for the role of Ox-PL analogs in CNS inflammatory diseases. Topics: Animals; Bone Marrow Cells; Bromodeoxyuridine; CD4 Antigens; Cell Differentiation; Central Nervous System; Cytokines; Dendritic Cells; Disease Models, Animal; Drug Interactions; Encephalitis; Encephalomyelitis, Autoimmune, Experimental; Enzyme-Linked Immunosorbent Assay; Female; Forkhead Transcription Factors; Freund's Adjuvant; Glycerylphosphorylcholine; Glycoproteins; Ionomycin; Ionophores; Lymph Nodes; Mice; Mice, Inbred BALB C; Mice, Inbred C57BL; Myelin-Oligodendrocyte Glycoprotein; Peptide Fragments; Pertussis Toxin; Phosphorylcholine; Polymethacrylic Acids; Severity of Illness Index; T-Lymphocytes; Time Factors | 2010 |