vasoactive-intestinal-peptide and Visceral-Pain

vasoactive-intestinal-peptide has been researched along with Visceral-Pain* in 2 studies

Other Studies

2 other study(ies) available for vasoactive-intestinal-peptide and Visceral-Pain

ArticleYear
Chemical profiles and pharmacological activities of Chang-Kang-Fang, a multi-herb Chinese medicinal formula, for treating irritable bowel syndrome.
    Journal of ethnopharmacology, 2017, Apr-06, Volume: 201

    Chang-Kang-Fang formula (CKF), a multi-herb traditional Chinese medicinal formula, has been clinically used for treatment of irritable bowel syndrome (IBS). The mechanisms of CKF for treating IBS and the components that are responsible for the activities were still unknown.. To investigate the chemical profiles and effects of CKF on IBS model.. The chemical profiles of CKF were investigated by ultra performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-Q/TOF-MS/MS). On colon irritation induced rat neonates IBS model, the influence of CKF on neuropeptides, including substance P (SP), calcitonin gene-related peptide (CGRP), vasoactive intestinal polypeptide (VIP) and 5-hydroxytryptamine (5-HT), were measured by ELISA, and the effect on intestinal sensitivity was assessed based on the abdominal withdrawal reflex (AWR) scores. In addition, the activities of CKF against acetic acid-induced nociceptive responses and prostigmin methylsulfate triggered intestinal propulsion in mice were also evaluated.. 80 components were identified or tentatively assigned from CKF, including 11 alkaloids, 20 flavanoids, 4 monoterpenoids, 9 iridoid glycoside, 9 phenylethanoid glycosides, 10 chromones, 7 organic acid, 3 coumarins, 2 triterpene and 5 other compounds. On IBS rat model, CKF was observed to reduce AWR scores and levels of SP, CGRP, VIP and 5-HT. Moreover, CKF reduced the acetic acid-induced writhing scores at all dosages and reduced the intestinal propulsion ration at dosage of 7.5 and 15.0g/kg/d.. CKF could alleviate the symptoms of IBS by modulating the brain-gut axis through increasing the production of neuropeptides such as CGRP, VIP, 5-HT and SP, releasing pain and reversing disorders of intestinal propulsion. Berberine, paeoniflorin, acteoside, flavonoids and chromones may be responsible for the multi-bioactivities of CKF.

    Topics: Acetic Acid; Animals; Calcitonin Gene-Related Peptide; Colon; Drugs, Chinese Herbal; Irritable Bowel Syndrome; Male; Mice; Phytochemicals; Rats, Sprague-Dawley; Serotonin; Substance P; Vasoactive Intestinal Peptide; Visceral Pain

2017
Altered vasoactive intestinal peptides expression in irritable bowel syndrome patients and rats with trinitrobenzene sulfonic acid-induced colitis.
    World journal of gastroenterology, 2015, Jan-07, Volume: 21, Issue:1

    To investigate the vasoactive intestinal peptides (VIP) expression in irritable bowel syndrome (IBS) and trinitrobenzene sulfonic acid (TNBS) induced colitis.. The VIP gene expression and protein plasma levels were measured in adult participants (45.8% male) who met Rome III criteria for IBS for longer than 6 mo and in a rat model of colitis as induced by TNBS. Plasma and colons were collected from naïve and inflamed rats. Markers assessing inflammation (i.e., weight changes and myeloperoxidase levels) were assessed on days 2, 7, 14 and 28 and compared to controls. Visceral hypersensitivity of the rats was assessed with colo-rectal distension and mechanical threshold testing on hind paws. IBS patients (n = 12) were age, gender, race, and BMI-matched with healthy controls (n = 12). Peripheral whole blood and plasma from fasting participants was collected and VIP plasma levels were assayed using a VIP peptide-enzyme immunoassay. Human gene expression of VIP was analyzed using a custom PCR array.. TNBS induced colitis in the rats was confirmed with weight loss (13.7 ± 3.2 g) and increased myeloperoxidase activity. Visceral hypersensitivity to colo-rectal distension was increased in TNBS treated rats up to 21 d and resolved by day 28. Somatic hypersensitivity was also increased up to 14 d post TNBS induction of colitis. The expression of an inflammatory marker myeloperoxidase was significantly elevated in the intracellular granules of neutrophils in rat models following TNBS treatment compared to naïve rats. This confirmed the induction of inflammation in rats following TNBS treatment. VIP plasma concentration was significantly increased in rats following TNBS treatment as compared to naïve animals (P < 0.05). Likewise, the VIP gene expression from peripheral whole blood was significantly upregulated by 2.91-fold in IBS patients when compared to controls (P < 0.00001; 95%CI). VIP plasma protein was not significantly different when compared with controls (P = 0.193).. Alterations in VIP expression may play a role in IBS. Therefore, a better understanding of the physiology of VIP could lead to new therapeutics.

    Topics: Adult; Animals; Biomarkers; Case-Control Studies; Colitis; Colon; Disease Models, Animal; Female; Gene Expression Regulation; Humans; Hyperalgesia; Inflammation Mediators; Irritable Bowel Syndrome; Male; Middle Aged; Pain Threshold; Peroxidase; Pilot Projects; Rats, Sprague-Dawley; RNA, Messenger; Signal Transduction; Time Factors; Trinitrobenzenesulfonic Acid; Vasoactive Intestinal Peptide; Visceral Pain; Weight Loss; Young Adult

2015