vasoactive-intestinal-peptide has been researched along with Hyperoxia* in 5 studies
1 review(s) available for vasoactive-intestinal-peptide and Hyperoxia
Article | Year |
---|---|
VIP/PACAP signaling as an alternative target during hyperoxic exposure in preterm newborns.
The use of oxygen therapy (high doses of oxygen - hyperoxia) in the treatment of premature infants results in their survival. However, it also results in a high incidence of chronic lung disease known as bronchopulmonary dysplasia, a disease in which airway hyper-responsiveness and pulmonary hypertension are well known as consequences. In our previous studies, we have shown that hyperoxia causes airway hyper-reactivity, characterized by an increased constrictive and impaired airway smooth muscle relaxation due to a reduced release of relaxant molecules such as nitric oxide, measured under in vivo and in vitro conditions (extra- and intrapulmonary) airways. In addition, the relaxation pathway of the vasoactive intestinal peptide (VIP) and/or pituitary adenylate cyclase activating peptide (PACAP) is another part of this system that plays an important role in the airway caliber. Peptide, which activates VIP cyclase and pituitary adenylate cyclase, has prolonged airway smooth muscle activity. It has long been known that VIP inhibits airway smooth muscle cell proliferation in a mouse model of asthma, but there is no data about its role in the regulation of airway and tracheal smooth muscle contractility during hyperoxic exposure of preterm newborns. Topics: Airway Remodeling; Animals; Animals, Newborn; Bronchopulmonary Dysplasia; Disease Models, Animal; Gestational Age; Humans; Hyperoxia; Infant, Newborn; Infant, Premature; Lung; Muscle, Smooth; Oxygen Inhalation Therapy; Pituitary Adenylate Cyclase-Activating Polypeptide; Premature Birth; Signal Transduction; Vasoactive Intestinal Peptide | 2021 |
4 other study(ies) available for vasoactive-intestinal-peptide and Hyperoxia
Article | Year |
---|---|
Prevention of hyperoxia-induced bronchial hyperreactivity by sildenafil and vasoactive intestinal peptide: impact of preserved lung function and structure.
Hyperoxia exposure leads to the development of lung injury and bronchial hyperreactivity (BHR) via involvement of nitric oxide (NO) pathway. We aimed at characterizing whether the stimulation of the NO pathway by sildenafil or vasoactive intestinal peptide (VIP) is able to prevent the hyperoxia-induced development of BHR. The respective roles of the preserved lung volume and alveolar architecture, the anti-inflammatory and anti-apoptotic potentials of these treatments in the diminished lung responsiveness were also characterized.. Immature (28-day-old) rats were exposed for 72 hours to room air (Group C), hyperoxia (>95%, Group HC), or hyperoxia with the concomitant administration of vasoactive intestinal peptide (VIP, Group HV) or sildenafil (Group HS). Following exposure, the end-expiratory lung volume (EELV) was assessed plethysmographically. Airway and respiratory tissue mechanics were measured under baseline conditions and following incremental doses of methacholine to assess BHR. Inflammation was assessed by analyzing the bronchoalveolar lavage fluid (BALF), while biochemical and histological analyses were used to characterize the apoptotic and structural changes in the lungs.. The BHR, the increased EELV, the aberrant alveolarization, and the infiltration of inflammatory cells into the BALF that developed in Group HC were all suppressed significantly by VIP or sildenafil treatment. The number of apoptotic cells increased significantly in Group HC, with no evidence of statistically significant effects on this adverse change in Groups HS and HV.. These findings suggest that stimulating the NO pathway by sildenafil and VIP exert their beneficial effect against hyperoxia-induced BHR via preserving normal EELV, inhibiting airway inflammation and preserving the physiological lung structure, whereas the antiapoptotic potential of these treatments were not apparent in this process. Topics: Animals; Bronchial Hyperreactivity; Hyperoxia; Lung; Male; Piperazines; Purines; Rats; Rats, Sprague-Dawley; Sildenafil Citrate; Sulfonamides; Vasoactive Intestinal Peptide | 2014 |
Role of vasoactive intestinal peptide in hyperoxia-induced injury of primary type II alveolar epithelial cells.
We investigated the effect of VIP on primary type II alveolar epithelial cells (AECIIs) upon the exposure of hyperoxia.. AECIIs were isolated and purified from premature rats and exposed to air (21% oxygen), hyperoxia(95% oxygen), VIP+air and VIP+hyperoxia, respectively. The proliferation and apoptosis of AECIIs were detected by MTT cell proliferation assay, flow cytometry and western blot. The production of intracellular reactive oxygen species (ROS) was determined by 2 ', 7'-dichloro-dihydrotestosterone fluorescein diacetate (DCFH-DA) molecular probe and the total antioxidant capacity (TAOC) by ultraviolate spectro-photometer.. Cell proliferation significantly increased and apoptosis decreased upon the treatment with VIP. In addition, the level of ROS in the hyperoxia+VIP group was significantly lower than in the hyperoxia group, in contrast, TAOC was higher in the hyperoxia+VIP group than that in the hyperoxia group.. VIP exerts a protective role in the hyperoxia-induced oxidative stress damage in AECIIs, which probably attributed to its anti-oxidant and anti-apoptosis property. Topics: Animals; Antioxidants; Apoptosis; Cell Proliferation; Epithelial Cells; Hyperoxia; Oxidative Stress; Pulmonary Alveoli; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Vasoactive Intestinal Peptide | 2011 |
Vasoactive intestinal peptide protects alveolar epithelial cells against hyperoxia via promoting the activation of STAT3.
Oxidative stress injury and death in alveolar epithelial cells plays an important role in the pathogenesis of prolonged hyperoxia-induced lung impairment. A reduced survival of type II alveolar epithelial cells (AECIIs) may lead to abnormal repair, resulting in acute and chronic pulmonary diseases. Hyperoxia lung injury is associated with the secretion of various bioactive substances and the activation of multiple transcription factors. Vasoactive intestinal peptide (VIP), as a pulmonary sensory neuropeptide, performs a vital function in regulating cell proliferation and cell death through signal transducers and activators of transcription 3 (STAT3). In the present study, we investigated the effects of VIP and STAT3 on AECIIs upon the exposure of hyperoxia. MLE-12 cells were random to air (21% oxygen), hyperoxia (95% oxygen) and VIP treatment with or without STAT3 siRNA transfection. The proliferation of AECIIs was detected by MTT cell proliferation assay. The apoptosis rate was measured by flow cytometry. Mitochondrial membrane potential was evaluated by fluorescent dye JC-1 to understand mitochondrial and cell damage. The activation of STAT3 was assessed by western blot detection of phosphorylated STAT3. Compared with hyperoxia exposure alone, additional VIP treatment promoted cell proliferation, maintained the mitochondrial membrane potential and reduced the apoptosis and necrosis of AECIIs. The protective effects aforesaid were weakened after STAT3 expression was down regulated by siRNA. Cells with STAT3 siRNA transfection had a higher mortality and a sharper decline in the mitochondrial membrane potential as well as a lower proliferation compared with wild-type cells after hyperoxia exposure with VIP administration. VIP interference, a protective management, could decrease hyperoxia-induced cell injury and death and improve the survival of AECIIs exposed to hyperoxia, which might be associated with the activation of STAT3. Topics: Animals; Apoptosis; Cell Proliferation; Cells, Cultured; Epithelial Cells; Hyperoxia; Mice; Mitochondria; Mitochondrial Membranes; Pulmonary Alveoli; STAT3 Transcription Factor; Vasoactive Intestinal Peptide | 2011 |
Depression of hypoxic arousal response in adolescent mice following antenatal vasoactive intestinal polypeptide blockade.
Late-gestation blockade of vasoactive intestinal polypeptide (VIP) activity in pregnant mice produces discrete morphological abnormalities in the somatosensory cortex of offspring. We investigated the functional implications of this lesion on the behavioural arousal response to moderate hypoxia. Pregnant mice received twice-daily injections of 200 microl saline (control), or saline + 50 microg VIP antagonist (anti-VIP) on embryonic days 17 and 18. Offspring were studied unrestrained at 6-7 weeks after birth, in a bias-flow whole-body plethysmograph during behavioural quiet sleep. Arousal was defined by movement (MVT) lasting > or =1 s. Hypoxic ventilatory (HVR) and arousal responses were measured during a 5 min exposure to 10 % O(2)-3 % CO(2) (hypoxia); peripheral chemoreflex drive was estimated by transient hyperoxia administered at rest and end-hypoxia (Dejours-type test). MVTs increased in all mice during hypoxia, but in anti-VIP mice: (a) MVT onset was delayed (174 +/- 90 vs. 108 +/- 59 s from the start of hypoxia, anti-VIP vs. control; P = 0.008); and (b) MVTs were less frequent, and total MVT time in hypoxia was less (8 +/- 7 vs. 15 +/- 9 %; P = 0.03). The HVR, and peripheral drive at rest and end-hypoxia were comparable in control and anti-VIP mice. In conclusion, a significant arousal deficit was evident in anti-VIP mice. This was not associated with obviously deranged peripheral or brainstem-mediated responses to hypoxia during sleep. This may signal a general deficit in the way hypoxic distress is monitored and processed, and arousal initiated and sustained in these mice. Topics: Animals; Arousal; Female; Hyperoxia; Hypoxia; Male; Mice; Plethysmography; Pregnancy; Prenatal Exposure Delayed Effects; Respiratory Mechanics; Sleep; Tidal Volume; Vasoactive Intestinal Peptide | 2002 |