vasoactive-intestinal-peptide has been researched along with Glucose-Intolerance* in 2 studies
2 other study(ies) available for vasoactive-intestinal-peptide and Glucose-Intolerance
Article | Year |
---|---|
HIV-based lentivirus-mediated vasoactive intestinal peptide gene delivery protects against DIO animal model of Type 2 diabetes.
Type 2 diabetes mellitus (T2DM) is characterised by insulin resistance, glucose intolerance and beta cell loss leading to hyperglycemia. Vasoactive intestinal peptide (VIP) has been regarded as a novel therapeutic agent for the treatment of T2DM because of its insulinotropic and anti-inflammatory properties. Despite these beneficial properties, VIP is extremely sensitive to peptidases (DPP-4) requiring constant infusion or multiple injections to observe any therapeutic benefit. Thus, we constructed an HIV-based lentiviral vector encoding human VIP (LentiVIP) to test the therapeutic efficacy of VIP peptide in a diet-induced obesity (DIO) animal model of T2DM. VIP gene expression was shown by immunocytochemistry (ICC) and VIP peptide secretion was confirmed by ELISA both in HepG2 liver and MIN6 pancreatic beta cell lines. Functional properties of VIP were demonstrated by cAMP production assay and glucose-stimulated insulin secretion test (GSIS). Intraperitoneal (IP) delivery of LentiVIP vectors into mice significantly increased serum VIP concentrations compared to control mice. Most importantly, LentiVIP delivery in DIO animal model of T2DM resulted in improved insulin sensitivity, glucose tolerance and protection against STZ-induced diabetes in addition to reduction in serum triglyceride/cholesterol levels. Collectively, these data suggest LentiVIP delivery should be evaluated as an experimental therapeutic approach for the treatment of T2DM. Topics: Animals; Blood Glucose; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diet, High-Fat; Disease Models, Animal; Gene Transfer Techniques; Glucose; Glucose Intolerance; Hep G2 Cells; Humans; Insulin; Insulin Resistance; Insulin-Secreting Cells; Lentivirus; Mice; Mice, Inbred C57BL; Obesity; Vasoactive Intestinal Peptide | 2018 |
PAC1 receptor-deficient mice display impaired insulinotropic response to glucose and reduced glucose tolerance.
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a ubiquitous neuropeptide of the vasoactive intestinal peptide (VIP) family that potentiates glucose-stimulated insulin secretion. Pancreatic beta cells express two PACAP receptor subtypes, a PACAP-preferring (PAC1) and a VIP-shared (VPAC2) receptor. We have applied a gene targeting approach to create a mouse lacking the PAC1 receptor (PAC1(-/-)). These mice were viable and normoglycemic, but exhibited a slight feeding hyperinsulinemia. In vitro, in the isolated perfused pancreas, the insulin secretory response to PACAP was reduced by 50% in PAC1(-/-) mice, whereas the response to VIP was unaffected. In vivo, the insulinotropic action of PACAP was also acutely reduced, and the peptide induced impairment of glucose tolerance after an intravenous glucose injection. This demonstrates that PAC1 receptor is involved in the insulinotropic action of the peptide. Moreover, PAC1(-/-) mice exhibited reduced glucose-stimulated insulin secretion in vitro and in vivo, showing that the PAC1 receptor is required to maintain normal insulin secretory responsiveness to glucose. The defective insulinotropic action of glucose was associated with marked glucose intolerance after both intravenous and gastric glucose administration. Thus, these results are consistent with a physiological role for the PAC1 receptor in glucose homeostasis, notably during food intake. Topics: Animals; Blood Glucose; Brain; Cyclic AMP; Female; Glucagon; Glucose Intolerance; Glucose Tolerance Test; Insulin; Mice; Mice, Mutant Strains; Neuropeptides; Pancreas; Perfusion; Pituitary Adenylate Cyclase-Activating Polypeptide; Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide; Receptors, Pituitary Adenylate Cyclase-Activating Polypeptide, Type I; Receptors, Pituitary Hormone; Receptors, Vasoactive Intestinal Peptide, Type II; Vasoactive Intestinal Peptide | 2000 |