vasoactive-intestinal-peptide and Familial-Primary-Pulmonary-Hypertension

vasoactive-intestinal-peptide has been researched along with Familial-Primary-Pulmonary-Hypertension* in 2 studies

Reviews

1 review(s) available for vasoactive-intestinal-peptide and Familial-Primary-Pulmonary-Hypertension

ArticleYear
Prospect of vasoactive intestinal peptide therapy for COPD/PAH and asthma: a review.
    Respiratory research, 2011, Apr-11, Volume: 12

    There is mounting evidence that pulmonary arterial hypertension (PAH), asthma and chronic obstructive pulmonary disease (COPD) share important pathological features, including inflammation, smooth muscle contraction and remodeling. No existing drug provides the combined potential advantages of reducing vascular- and bronchial-constriction, and anti-inflammation. Vasoactive intestinal peptide (VIP) is widely expressed throughout the cardiopulmonary system and exerts a variety of biological actions, including potent vascular and airway dilatory actions, potent anti-inflammatory actions, improving blood circulation to the heart and lung, and modulation of airway secretions. VIP has emerged as a promising drug candidate for the treatment of cardiopulmonary disorders such as PAH, asthma, and COPD. Clinical application of VIP has been limited in the past for a number of reasons, including its short plasma half-life and difficulty in administration routes. The development of long-acting VIP analogues, in combination with appropriate drug delivery systems, may provide clinically useful agents for the treatment of PAH, asthma, and COPD. This article reviews the physiological significance of VIP in cardiopulmonary system and the therapeutic potential of VIP-based agents in the treatment of pulmonary diseases.

    Topics: Animals; Asthma; Familial Primary Pulmonary Hypertension; Humans; Hypertension, Pulmonary; Pulmonary Disease, Chronic Obstructive; Respiratory System Agents; Vasoactive Intestinal Peptide

2011

Other Studies

1 other study(ies) available for vasoactive-intestinal-peptide and Familial-Primary-Pulmonary-Hypertension

ArticleYear
VIP and endothelin receptor antagonist: an effective combination against experimental pulmonary arterial hypertension.
    Respiratory research, 2011, Oct-26, Volume: 12

    Pulmonary Arterial Hypertension (PAH) remains a therapeutic challenge, and the search continues for more effective drugs and drug combinations. We recently reported that deletion of the vasoactive intestinal peptide (VIP) gene caused the spontaneous expression of a PH phenotype that was fully corrected by VIP. The objectives of this investigation were to answer the questions: 1) Can VIP protect against PH in other experimental models? and 2) Does combining VIP with an endothelin (ET) receptor antagonist bosentan enhance its efficacy?. Within 3 weeks of a single injection of monocrotaline (MCT, s.c.) in Sprague Dawley rats, PAH developed, manifested by pulmonary vascular remodeling, lung inflammation, RV hypertrophy, and death within the next 2 weeks. MCT-injected animals were either untreated, treated with bosentan (p.o.) alone, with VIP (i.p.) alone, or with both together. We selected this particular combination upon finding that VIP down-regulates endothelin receptor expression which is further suppressed by bosentan. Therapeutic outcomes were compared as to hemodynamics, pulmonary vascular pathology, and survival.. Treatment with VIP, every other day for 3 weeks, begun on the same day as MCT, almost totally prevented PAH pathology, and eliminated mortality for 45 days. Begun 3 weeks after MCT, however, VIP only partially reversed PAH pathology, though more effectively than bosentan. Combined therapy with both drugs fully reversed the pathology, while preventing mortality for at least 45 days.. 1) VIP completely prevented and significantly reversed MCT-induced PAH; 2) VIP was more effective than bosentan, probably because it targets a wider range of pro-remodeling pathways; and 3) combination therapy with VIP plus bosentan was more effective than either drug alone, probably because both drugs synergistically suppressed ET-ET receptor pathway.

    Topics: Animals; Bosentan; Drug Therapy, Combination; Endothelin Receptor Antagonists; Familial Primary Pulmonary Hypertension; Hypertension, Pulmonary; Monocrotaline; Rats; Rats, Sprague-Dawley; Receptors, Endothelin; Sulfonamides; Vasoactive Intestinal Peptide

2011