vapiprost and Lupus-Nephritis

vapiprost has been researched along with Lupus-Nephritis* in 2 studies

Other Studies

2 other study(ies) available for vapiprost and Lupus-Nephritis

ArticleYear
Thromboxane receptor blockade reduces renal injury in murine lupus nephritis.
    Kidney international, 1992, Volume: 41, Issue:4

    To investigate the role of thromboxane A2 (TxA2) in murine lupus, we assessed the effects of the specific thromboxane receptor antagonist GR32191 on immune complex glomerulonephritis in MRL-lpr/lpr mice. Forty mg/kg/day GR32191 was given by twice daily subcutaneous injection for eight weeks beginning at 12 weeks of age. This dose completely blocked the renal vasoconstriction produced by the thromboxane agonist U46619. After eight weeks of treatment, both glomerular filtration rate (GFR) (8.9 +/- 0.6 vs. 6.8 +/- 1.1 ml/min/kg; P less than 0.05) and PAH clearance (CPAH) (37.4 +/- 2.5 vs. 29.9 +/- 3.3 ml/min/kg; P less than 0.05) were significantly higher in mice given GR32191 compared to vehicle treated animals. Administration of GR32191 also reduced proteinuria from 18.1 +/- 11.6 to 3.7 +/- 1.3 mg/24 hours (P less than 0.05). In GR32191 treated MRL-lpr/lpr mice, renal hemodynamic function and proteinuria were not significantly different from congenic MRL-+/+ controls. Thromboxane receptor blockade had striking affects on renal histomorphology reducing both hyaline thrombi in glomeruli (P = 0.022) and interstitial inflammation (P = 0.006). Glomerular crescents and severity of vasculitis also tended to be reduced in mice receiving the thromboxane receptor antagonist. The overall histopathologic score in mice given GR32191 was significantly lower than vehicle treated animals (4.7 +/- 0.5 vs. 8.4 +/- 1.5; P = 0.016). These effects of GR32191 were associated with decreased excretion of thromboxane B2 (TxB2) in urine (292 +/- 37 vs. 747 +/- 155 pg/24 hr; P less than 0.005) as well as a modest reduction in glomerular deposits of IgG (semiquantitative score 2.6 +/- 0.2 vs. 3.5 +/- 0.2; P less than 0.02). Thus, chronic thromboxane receptor blockade markedly altered the course of renal disease in MRL-lpr/lpr mice, suggesting that TxA2 is an important mediator of renal dysfunction and injury in this murine model of lupus nephritis.

    Topics: Animals; Antibodies, Antinuclear; Biphenyl Compounds; DNA; Hemodynamics; Heptanoic Acids; Immunoglobulins; Interleukin-1; Kidney; Lupus Nephritis; Mice; Mice, Mutant Strains; Receptors, Prostaglandin; Receptors, Thromboxane; RNA, Messenger; Thromboxane A2

1992
Physiologic role for enhanced renal thromboxane production in murine lupus nephritis.
    Prostaglandins, 1991, Volume: 42, Issue:1

    To investigate the physiologic significance of enhanced renal thromboxane production in murine lupus nephritis, we measured renal hemodynamics and eicosanoid production in MRL-lpr/lpr mice from 8 to 20 weeks of age. Over this age range, MRL-lpr/lpr mice develop an autoimmune disease with nephritis similar to human systemic lupus erythematosus (SLE). In these studies, glomerular filtration rate (GFR) and PAH clearance (CPAH) decreased progressively with age in MRL-lpr/lpr mice, but not in controls. This impairment of renal hemodynamics was associated with increased renal thromboxane production, as well as increased excretion of both thromboxane B2 (TxB2) and 2,3-dinor TxB2 in urine. There was an inverse correlation between renal thromboxane production in MRL-lpr/lpr mice and both GFR and CPAH. Furthermore, there were positive correlations between thromboxane production by the kidney and both the severity of renal histopathology and serum anti-DNA antibody levels measured in individual animals. Enhanced urinary excretion of TxB2 and the development of renal dysfunction also coincided temporally with the appearance of increased levels of interleukin 1 beta (IL-1 beta) mRNA in renal cortex. Acute administration of the specific thromboxane receptor antagonist GR32191 to MRL-lpr/lpr mice restored GFR to normal in early stages of the autoimmune disease. However, in animals with more advanced nephritis, the effect of acute thromboxane receptor blockade on renal hemodynamics was less marked. We conclude that thromboxane A2 is an important mediator of reversible renal hemodynamic impairment in murine lupus, especially in the early phase of disease.

    Topics: Age Factors; Animals; Biphenyl Compounds; Blotting, Northern; DNA; Heptanoic Acids; Interleukin-1; Kidney; Kidney Function Tests; Lupus Nephritis; Metabolic Clearance Rate; Mice; Mice, Inbred Strains; Radioimmunoassay; RNA, Messenger; Thromboxane A2; Thromboxane B2

1991