valsartan has been researched along with Injury, Myocardial Reperfusion in 20 studies
Timeframe | Studies, this research(%) | All Research% |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 1 (5.00) | 18.2507 |
2000's | 6 (30.00) | 29.6817 |
2010's | 10 (50.00) | 24.3611 |
2020's | 3 (15.00) | 2.80 |
Authors | Studies |
---|---|
Chen, M; He, H; Hong, M; Hu, Q; Jia, Z; Liu, M; Wang, L; Xiao, F; Yang, Y; Zhang, H; Zhang, L | 1 |
Barbato, E; Bellis, A; Di Gioia, G; Mauro, C; Morisco, C; Sorriento, D; Trimarco, B | 1 |
Choi, KH; Hwang, HS; Ji, E; Kang, DH; Kang, GH; Lee, S; Song, JM; Song, N | 1 |
Černe, D; Drevenšek, G; France Štiglic, A; Janić, M; Jerin, A; Lunder, M; Marc, J; Šabovič, M; Skitek, M | 1 |
deKemp, RA; Hu, X; Klein, R; Mikush, N; Pfau, D; Renaud, JM; Sinusas, AJ; Thorn, SL; Tirziu, D; Wu, X; Young, LH; Zhang, J | 1 |
Chen, C; Dai, R; Hong, M; Lin, R; Wu, B; Wu, H | 1 |
Cai, Y; He, L; He, X; He, Y; Luo, J; Wu, X; Zhang, G; Zhang, Z | 1 |
Campbell, DJ; Koid, SS; Ziogas, J | 1 |
Li, KY; Zhang, YJ | 1 |
Arimura, T; Goto, M; Imaizumi, S; Iwata, A; Kuwano, T; Matsuo, Y; Miura, S; Saku, K; Suematsu, Y; Yahiro, E | 1 |
Chen, LH; Ding, JW; Jiang, H; Li, S; Yang, J; Zhang, XD | 1 |
Hotta, H; Ishikawa, S; Itoh, T; Kim, SJ; Kuno, A; Maeda, T; Miki, T; Miura, T; Satoh, T; Shimamoto, K; Tanno, M; Terashima, Y; Togashi, N; Yano, T | 1 |
Bengel, FM; Bravo, PE; Dannals, RF; Fukushima, K; Higuchi, T; Javadi, MS; Lautamäki, R; Mathews, WB; Szabo, Z; Xia, J | 1 |
Birnbaum, Y; Castillo, AC; Perez-Polo, JR; Qian, J; Ye, Y | 1 |
Jugdutt, BI; Menon, V | 1 |
Jugdutt, BI; Sawicki, G | 2 |
Colson, P; Foëx, P; Guillon, G; Ryckwaert, F | 1 |
Bai, XJ; Qi, ZM; Wang, HX; Zhang, YJ | 1 |
Fujimura, Y; Hayashi, N; Kometani, M; Nakao, K; Yamamoto, S | 1 |
1 review(s) available for valsartan and Injury, Myocardial Reperfusion
Article | Year |
---|---|
The Rationale of Neprilysin Inhibition in Prevention of Myocardial Ischemia-Reperfusion Injury during ST-Elevation Myocardial Infarction.
Topics: Adrenomedullin; Aminobutyrates; Angiotensin II; Animals; Apelin; Atrial Natriuretic Factor; Biphenyl Compounds; Bradykinin; Cardiotonic Agents; Drug Combinations; Gene Expression Regulation; Humans; Mice; Myocardial Reperfusion Injury; Neprilysin; ST Elevation Myocardial Infarction; Substance P; Survival Analysis; Tetrazoles; Valsartan; Ventricular Remodeling | 2020 |
19 other study(ies) available for valsartan and Injury, Myocardial Reperfusion
Article | Year |
---|---|
Sacubitril/valsartan attenuates myocardial ischemia/reperfusion injury via inhibition of the GSK3β/NF-κB pathway in cardiomyocytes.
Topics: Angiotensins; Animals; Glycogen Synthase Kinase 3 beta; Inflammation; Mice; Myocardial Reperfusion Injury; Myocytes, Cardiac; Neprilysin; NF-kappa B; Receptors, Angiotensin; Tetrazoles; Valsartan | 2022 |
Effect of Neprilysin Inhibition for Ischemic Mitral Regurgitation after Myocardial Injury.
Topics: Aminobutyrates; Angiotensin Receptor Antagonists; Animals; Biphenyl Compounds; Cells, Cultured; Drug Combinations; Endothelial Cells; Heart Failure; Humans; Male; Mitral Valve; Mitral Valve Insufficiency; Myocardial Infarction; Myocardial Reperfusion Injury; Neprilysin; Rats; Rats, Sprague-Dawley; Valsartan; Ventricular Function, Left; Ventricular Remodeling | 2021 |
Sub-therapeutic doses of fluvastatin and valsartan are more effective than therapeutic doses in providing beneficial cardiovascular pleiotropic effects in rats: A proof of concept study.
Topics: Angiotensin II Type 1 Receptor Blockers; Animals; Aorta, Thoracic; Arginine; Blood Pressure; Cholesterol; Coronary Circulation; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Therapy, Combination; Fatty Acids, Monounsaturated; Female; Fluvastatin; Heart; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Indoles; Male; Myocardial Reperfusion Injury; Myocardium; Nitric Oxide; Nitric Oxide Synthase Type III; Rats, Wistar; Receptor, Endothelin A; Time Factors; Valsartan; Vasodilation | 2017 |
Angiotensin Receptor Neprilysin Inhibitor Attenuates Myocardial Remodeling and Improves Infarct Perfusion in Experimental Heart Failure.
Topics: Aminobutyrates; Angiotensin Receptor Antagonists; Animals; Biphenyl Compounds; Drug Combinations; Heart; Heart Failure; Male; Myocardial Reperfusion Injury; Myocardium; Neovascularization, Physiologic; Neprilysin; Organotechnetium Compounds; Peptides, Cyclic; Rats; Rats, Inbred Lew; Single Photon Emission Computed Tomography Computed Tomography; Tetrazoles; Valsartan; Vascular Endothelial Growth Factor A; Ventricular Remodeling | 2019 |
Valsartan attenuates oxidative stress and NF-κB activation and reduces myocardial apoptosis after ischemia and reperfusion.
Topics: Angiotensin II Type 1 Receptor Blockers; Animals; Apoptosis; Caspase 3; Male; Malondialdehyde; Myocardial Reperfusion Injury; NADPH Oxidases; NF-kappa B; Oxidative Stress; Rats; Rats, Sprague-Dawley; Superoxide Dismutase; Tetrazoles; Tumor Necrosis Factor-alpha; Valine; Valsartan | 2013 |
Induction of autophagy contributes to the myocardial protection of valsartan against ischemia‑reperfusion injury.
Topics: Adenine; Animals; Autophagy; Cardiotonic Agents; Hemodynamics; Ischemic Preconditioning; Male; Myocardial Infarction; Myocardial Reperfusion Injury; Myocardium; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Ribosomal Protein S6 Kinases; Signal Transduction; Tetrazoles; TOR Serine-Threonine Kinases; Valine; Valsartan | 2013 |
Aliskiren reduces myocardial ischemia-reperfusion injury by a bradykinin B2 receptor- and angiotensin AT2 receptor-mediated mechanism.
Topics: Amides; Angiotensin II Type 2 Receptor Blockers; Animals; Antihypertensive Agents; Blood Pressure; Body Weight; Bradykinin; Bradykinin B2 Receptor Antagonists; Cardiotonic Agents; Drug Therapy, Combination; Female; Fumarates; Imidazoles; Models, Animal; Myocardial Infarction; Myocardial Reperfusion Injury; Pyridines; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 2; Receptor, Bradykinin B2; Tetrazoles; Valine; Valsartan | 2014 |
Valsartan-induced cardioprotection involves angiotensin II type 2 receptor upregulation in isolated ischaemia and reperfused rat hearts.
Topics: Angiotensin II Type 1 Receptor Blockers; Animals; Blotting, Western; Coronary Circulation; Disease Models, Animal; Gene Expression Regulation; Male; Myocardial Reperfusion Injury; Rats; Rats, Sprague-Dawley; Real-Time Polymerase Chain Reaction; Receptor, Angiotensin, Type 2; RNA, Messenger; Tetrazoles; Up-Regulation; Valine; Valsartan | 2015 |
LCZ696, an angiotensin receptor-neprilysin inhibitor, improves cardiac function with the attenuation of fibrosis in heart failure with reduced ejection fraction in streptozotocin-induced diabetic mice.
Topics: Aminobutyrates; Angiotensin Receptor Antagonists; Animals; Atrial Natriuretic Factor; Biphenyl Compounds; Diabetes Mellitus, Experimental; Drug Combinations; Fibrosis; Heart; Heart Failure; Heart Ventricles; Male; Mice; Mice, Inbred C57BL; Myocardial Reperfusion Injury; Myocardium; Neprilysin; RNA, Messenger; Stroke Volume; Tetrazoles; Transforming Growth Factor beta; Valsartan | 2016 |
Valsartan preconditioning protects against myocardial ischemia-reperfusion injury through TLR4/NF-kappaB signaling pathway.
Topics: Angiotensin II Type 1 Receptor Blockers; Animals; Inflammation Mediators; Ischemic Preconditioning, Myocardial; Myocardial Reperfusion Injury; NF-kappa B; Rats; Signal Transduction; Tetrazoles; Toll-Like Receptor 4; Treatment Outcome; Valine; Valsartan | 2009 |
Angiotensin II type 1 receptor-mediated upregulation of calcineurin activity underlies impairment of cardioprotective signaling in diabetic hearts.
Topics: Angiotensin II Type 1 Receptor Blockers; Animals; Calcineurin; Diabetes Mellitus, Type 2; Enkephalin, Leucine-2-Alanine; Erythropoietin; Immunosuppressive Agents; Ischemic Preconditioning, Myocardial; Janus Kinase 2; Losartan; Male; Myocardial Reperfusion Injury; Myocardium; Phosphatidylinositol 3-Kinases; Phosphorylation; Proto-Oncogene Proteins c-akt; Rats; Rats, Inbred OLETF; Receptor, Angiotensin, Type 1; Receptors, Opioid, delta; Signal Transduction; Species Specificity; Tacrolimus; Tetrazoles; Up-Regulation; Valine; Valsartan | 2010 |
Radionuclide imaging of angiotensin II type 1 receptor upregulation after myocardial ischemia-reperfusion injury.
Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme Inhibitors; Animals; Autoradiography; Enalapril; Feasibility Studies; Male; Myocardial Reperfusion Injury; Myocardium; Positron-Emission Tomography; Pyridines; Radiopharmaceuticals; Rats; Rats, Wistar; Receptor, Angiotensin, Type 1; Renin-Angiotensin System; Tetrazoles; Tissue Distribution; Valine; Valsartan | 2010 |
Aliskiren and Valsartan reduce myocardial AT1 receptor expression and limit myocardial infarct size in diabetic mice.
Topics: Administration, Oral; Amides; Angiotensin II Type 1 Receptor Blockers; Animals; Diabetes Mellitus, Experimental; Drug Therapy, Combination; Fumarates; Hemodynamics; Immunoblotting; Male; Mice; Mice, Inbred Strains; Myocardial Infarction; Myocardial Reperfusion Injury; Receptor, Angiotensin, Type 1; Renin; Tetrazoles; Valine; Valsartan | 2011 |
AT1 receptor blockade limits myocardial injury and upregulates AT2 receptors during reperfused myocardial infarction.
Topics: Angiotensin II Type 1 Receptor Blockers; Animals; Biphenyl Compounds; Blood Pressure; Dogs; Heart Rate; Heart Ventricles; Hemodynamics; Irbesartan; Myocardial Infarction; Myocardial Reperfusion Injury; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Tetrazoles; Time Factors; Valine; Valsartan; Ventricular Remodeling | 2004 |
AT1 receptor blockade alters metabolic, functional and structural proteins after reperfused myocardial infarction: detection using proteomics.
Topics: Angiotensin II Type 1 Receptor Blockers; Animals; ATP Synthetase Complexes; Biphenyl Compounds; Creatine Kinase; Dogs; Hemodynamics; Irbesartan; Isocitrate Dehydrogenase; Myocardial Infarction; Myocardial Reperfusion Injury; Myosin Light Chains; Proteins; Proteomics; Receptor, Angiotensin, Type 1; Tetrazoles; Valine; Valsartan; Ventricular Function, Left | 2004 |
Cumulative effects of AT1 and AT2 receptor blockade on ischaemia-reperfusion recovery in rat hearts.
Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin II Type 2 Receptor Blockers; Animals; Heart; In Vitro Techniques; Male; Myocardial Reperfusion Injury; Rats; Rats, Wistar; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Recovery of Function; Tetrazoles; Valine; Valsartan; Ventricular Function, Left | 2005 |
[Mechanism of cardioprotection against ischemia/reperfusion injury by valsartan: an experiment with isolated rat hearts].
Topics: Animals; Bradykinin; Bradykinin B2 Receptor Antagonists; Cardiotonic Agents; Creatine Kinase, MB Form; Disease Models, Animal; In Vitro Techniques; Male; Myocardial Reperfusion Injury; Random Allocation; Rats; Rats, Sprague-Dawley; Receptor, Bradykinin B2; Tetrazoles; Valine; Valsartan; Ventricular Function, Left | 2005 |
Valsartan reverses post-translational modifications of the delta-subunit of ATP synthase during in vivo canine reperfused myocardial infarction.
Topics: Amino Acids; Angiotensin II Type 2 Receptor Blockers; Animals; Apoptosis; Dogs; Mitochondrial Proton-Translocating ATPases; Myocardial Infarction; Myocardial Reperfusion Injury; Necrosis; Phosphorylation; Protein Processing, Post-Translational; Protein Subunits; Proteomics; Receptor, Angiotensin, Type 2; Tetrazoles; Valine; Valsartan; Ventricular Dysfunction, Left | 2007 |
Pharmacological profile of valsartan, a non-peptide angiotensin II type 1 receptor antagonist. 4th communication: improvement of heart failure of rats with myocardial infarction by valasartan.
Topics: Angiotensin Receptor Antagonists; Animals; Antihypertensive Agents; Blood Pressure; Body Weight; Cardiomegaly; Enalapril; Male; Myocardial Infarction; Myocardial Ischemia; Myocardial Reperfusion Injury; Organ Size; Rats; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Tetrazoles; Valine; Valsartan; Vascular Resistance; Ventricular Function, Left | 1997 |