Page last updated: 2024-08-24

valsartan and Injury, Myocardial Reperfusion

valsartan has been researched along with Injury, Myocardial Reperfusion in 20 studies

Research

Studies (20)

TimeframeStudies, this research(%)All Research%
pre-19900 (0.00)18.7374
1990's1 (5.00)18.2507
2000's6 (30.00)29.6817
2010's10 (50.00)24.3611
2020's3 (15.00)2.80

Authors

AuthorsStudies
Chen, M; He, H; Hong, M; Hu, Q; Jia, Z; Liu, M; Wang, L; Xiao, F; Yang, Y; Zhang, H; Zhang, L1
Barbato, E; Bellis, A; Di Gioia, G; Mauro, C; Morisco, C; Sorriento, D; Trimarco, B1
Choi, KH; Hwang, HS; Ji, E; Kang, DH; Kang, GH; Lee, S; Song, JM; Song, N1
Černe, D; Drevenšek, G; France Štiglic, A; Janić, M; Jerin, A; Lunder, M; Marc, J; Šabovič, M; Skitek, M1
deKemp, RA; Hu, X; Klein, R; Mikush, N; Pfau, D; Renaud, JM; Sinusas, AJ; Thorn, SL; Tirziu, D; Wu, X; Young, LH; Zhang, J1
Chen, C; Dai, R; Hong, M; Lin, R; Wu, B; Wu, H1
Cai, Y; He, L; He, X; He, Y; Luo, J; Wu, X; Zhang, G; Zhang, Z1
Campbell, DJ; Koid, SS; Ziogas, J1
Li, KY; Zhang, YJ1
Arimura, T; Goto, M; Imaizumi, S; Iwata, A; Kuwano, T; Matsuo, Y; Miura, S; Saku, K; Suematsu, Y; Yahiro, E1
Chen, LH; Ding, JW; Jiang, H; Li, S; Yang, J; Zhang, XD1
Hotta, H; Ishikawa, S; Itoh, T; Kim, SJ; Kuno, A; Maeda, T; Miki, T; Miura, T; Satoh, T; Shimamoto, K; Tanno, M; Terashima, Y; Togashi, N; Yano, T1
Bengel, FM; Bravo, PE; Dannals, RF; Fukushima, K; Higuchi, T; Javadi, MS; Lautamäki, R; Mathews, WB; Szabo, Z; Xia, J1
Birnbaum, Y; Castillo, AC; Perez-Polo, JR; Qian, J; Ye, Y1
Jugdutt, BI; Menon, V1
Jugdutt, BI; Sawicki, G2
Colson, P; Foëx, P; Guillon, G; Ryckwaert, F1
Bai, XJ; Qi, ZM; Wang, HX; Zhang, YJ1
Fujimura, Y; Hayashi, N; Kometani, M; Nakao, K; Yamamoto, S1

Reviews

1 review(s) available for valsartan and Injury, Myocardial Reperfusion

ArticleYear
The Rationale of Neprilysin Inhibition in Prevention of Myocardial Ischemia-Reperfusion Injury during ST-Elevation Myocardial Infarction.
    Cells, 2020, 09-21, Volume: 9, Issue:9

    Topics: Adrenomedullin; Aminobutyrates; Angiotensin II; Animals; Apelin; Atrial Natriuretic Factor; Biphenyl Compounds; Bradykinin; Cardiotonic Agents; Drug Combinations; Gene Expression Regulation; Humans; Mice; Myocardial Reperfusion Injury; Neprilysin; ST Elevation Myocardial Infarction; Substance P; Survival Analysis; Tetrazoles; Valsartan; Ventricular Remodeling

2020

Other Studies

19 other study(ies) available for valsartan and Injury, Myocardial Reperfusion

ArticleYear
Sacubitril/valsartan attenuates myocardial ischemia/reperfusion injury via inhibition of the GSK3β/NF-κB pathway in cardiomyocytes.
    Archives of biochemistry and biophysics, 2022, 11-15, Volume: 730

    Topics: Angiotensins; Animals; Glycogen Synthase Kinase 3 beta; Inflammation; Mice; Myocardial Reperfusion Injury; Myocytes, Cardiac; Neprilysin; NF-kappa B; Receptors, Angiotensin; Tetrazoles; Valsartan

2022
Effect of Neprilysin Inhibition for Ischemic Mitral Regurgitation after Myocardial Injury.
    International journal of molecular sciences, 2021, Aug-10, Volume: 22, Issue:16

    Topics: Aminobutyrates; Angiotensin Receptor Antagonists; Animals; Biphenyl Compounds; Cells, Cultured; Drug Combinations; Endothelial Cells; Heart Failure; Humans; Male; Mitral Valve; Mitral Valve Insufficiency; Myocardial Infarction; Myocardial Reperfusion Injury; Neprilysin; Rats; Rats, Sprague-Dawley; Valsartan; Ventricular Function, Left; Ventricular Remodeling

2021
Sub-therapeutic doses of fluvastatin and valsartan are more effective than therapeutic doses in providing beneficial cardiovascular pleiotropic effects in rats: A proof of concept study.
    Vascular pharmacology, 2017, Volume: 99

    Topics: Angiotensin II Type 1 Receptor Blockers; Animals; Aorta, Thoracic; Arginine; Blood Pressure; Cholesterol; Coronary Circulation; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Therapy, Combination; Fatty Acids, Monounsaturated; Female; Fluvastatin; Heart; Hydroxymethylglutaryl-CoA Reductase Inhibitors; In Vitro Techniques; Indoles; Male; Myocardial Reperfusion Injury; Myocardium; Nitric Oxide; Nitric Oxide Synthase Type III; Rats, Wistar; Receptor, Endothelin A; Time Factors; Valsartan; Vasodilation

2017
Angiotensin Receptor Neprilysin Inhibitor Attenuates Myocardial Remodeling and Improves Infarct Perfusion in Experimental Heart Failure.
    Scientific reports, 2019, 04-08, Volume: 9, Issue:1

    Topics: Aminobutyrates; Angiotensin Receptor Antagonists; Animals; Biphenyl Compounds; Drug Combinations; Heart; Heart Failure; Male; Myocardial Reperfusion Injury; Myocardium; Neovascularization, Physiologic; Neprilysin; Organotechnetium Compounds; Peptides, Cyclic; Rats; Rats, Inbred Lew; Single Photon Emission Computed Tomography Computed Tomography; Tetrazoles; Valsartan; Vascular Endothelial Growth Factor A; Ventricular Remodeling

2019
Valsartan attenuates oxidative stress and NF-κB activation and reduces myocardial apoptosis after ischemia and reperfusion.
    European journal of pharmacology, 2013, Apr-05, Volume: 705, Issue:1-3

    Topics: Angiotensin II Type 1 Receptor Blockers; Animals; Apoptosis; Caspase 3; Male; Malondialdehyde; Myocardial Reperfusion Injury; NADPH Oxidases; NF-kappa B; Oxidative Stress; Rats; Rats, Sprague-Dawley; Superoxide Dismutase; Tetrazoles; Tumor Necrosis Factor-alpha; Valine; Valsartan

2013
Induction of autophagy contributes to the myocardial protection of valsartan against ischemia‑reperfusion injury.
    Molecular medicine reports, 2013, Volume: 8, Issue:6

    Topics: Adenine; Animals; Autophagy; Cardiotonic Agents; Hemodynamics; Ischemic Preconditioning; Male; Myocardial Infarction; Myocardial Reperfusion Injury; Myocardium; Proto-Oncogene Proteins c-akt; Rats; Rats, Sprague-Dawley; Ribosomal Protein S6 Kinases; Signal Transduction; Tetrazoles; TOR Serine-Threonine Kinases; Valine; Valsartan

2013
Aliskiren reduces myocardial ischemia-reperfusion injury by a bradykinin B2 receptor- and angiotensin AT2 receptor-mediated mechanism.
    Hypertension (Dallas, Tex. : 1979), 2014, Volume: 63, Issue:4

    Topics: Amides; Angiotensin II Type 2 Receptor Blockers; Animals; Antihypertensive Agents; Blood Pressure; Body Weight; Bradykinin; Bradykinin B2 Receptor Antagonists; Cardiotonic Agents; Drug Therapy, Combination; Female; Fumarates; Imidazoles; Models, Animal; Myocardial Infarction; Myocardial Reperfusion Injury; Pyridines; Rats; Rats, Sprague-Dawley; Receptor, Angiotensin, Type 2; Receptor, Bradykinin B2; Tetrazoles; Valine; Valsartan

2014
Valsartan-induced cardioprotection involves angiotensin II type 2 receptor upregulation in isolated ischaemia and reperfused rat hearts.
    Acta cardiologica, 2015, Volume: 70, Issue:1

    Topics: Angiotensin II Type 1 Receptor Blockers; Animals; Blotting, Western; Coronary Circulation; Disease Models, Animal; Gene Expression Regulation; Male; Myocardial Reperfusion Injury; Rats; Rats, Sprague-Dawley; Real-Time Polymerase Chain Reaction; Receptor, Angiotensin, Type 2; RNA, Messenger; Tetrazoles; Up-Regulation; Valine; Valsartan

2015
LCZ696, an angiotensin receptor-neprilysin inhibitor, improves cardiac function with the attenuation of fibrosis in heart failure with reduced ejection fraction in streptozotocin-induced diabetic mice.
    European journal of heart failure, 2016, Volume: 18, Issue:4

    Topics: Aminobutyrates; Angiotensin Receptor Antagonists; Animals; Atrial Natriuretic Factor; Biphenyl Compounds; Diabetes Mellitus, Experimental; Drug Combinations; Fibrosis; Heart; Heart Failure; Heart Ventricles; Male; Mice; Mice, Inbred C57BL; Myocardial Reperfusion Injury; Myocardium; Neprilysin; RNA, Messenger; Stroke Volume; Tetrazoles; Transforming Growth Factor beta; Valsartan

2016
Valsartan preconditioning protects against myocardial ischemia-reperfusion injury through TLR4/NF-kappaB signaling pathway.
    Molecular and cellular biochemistry, 2009, Volume: 330, Issue:1-2

    Topics: Angiotensin II Type 1 Receptor Blockers; Animals; Inflammation Mediators; Ischemic Preconditioning, Myocardial; Myocardial Reperfusion Injury; NF-kappa B; Rats; Signal Transduction; Tetrazoles; Toll-Like Receptor 4; Treatment Outcome; Valine; Valsartan

2009
Angiotensin II type 1 receptor-mediated upregulation of calcineurin activity underlies impairment of cardioprotective signaling in diabetic hearts.
    Circulation research, 2010, Jan-08, Volume: 106, Issue:1

    Topics: Angiotensin II Type 1 Receptor Blockers; Animals; Calcineurin; Diabetes Mellitus, Type 2; Enkephalin, Leucine-2-Alanine; Erythropoietin; Immunosuppressive Agents; Ischemic Preconditioning, Myocardial; Janus Kinase 2; Losartan; Male; Myocardial Reperfusion Injury; Myocardium; Phosphatidylinositol 3-Kinases; Phosphorylation; Proto-Oncogene Proteins c-akt; Rats; Rats, Inbred OLETF; Receptor, Angiotensin, Type 1; Receptors, Opioid, delta; Signal Transduction; Species Specificity; Tacrolimus; Tetrazoles; Up-Regulation; Valine; Valsartan

2010
Radionuclide imaging of angiotensin II type 1 receptor upregulation after myocardial ischemia-reperfusion injury.
    Journal of nuclear medicine : official publication, Society of Nuclear Medicine, 2010, Volume: 51, Issue:12

    Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin-Converting Enzyme Inhibitors; Animals; Autoradiography; Enalapril; Feasibility Studies; Male; Myocardial Reperfusion Injury; Myocardium; Positron-Emission Tomography; Pyridines; Radiopharmaceuticals; Rats; Rats, Wistar; Receptor, Angiotensin, Type 1; Renin-Angiotensin System; Tetrazoles; Tissue Distribution; Valine; Valsartan

2010
Aliskiren and Valsartan reduce myocardial AT1 receptor expression and limit myocardial infarct size in diabetic mice.
    Cardiovascular drugs and therapy, 2011, Volume: 25, Issue:6

    Topics: Administration, Oral; Amides; Angiotensin II Type 1 Receptor Blockers; Animals; Diabetes Mellitus, Experimental; Drug Therapy, Combination; Fumarates; Hemodynamics; Immunoblotting; Male; Mice; Mice, Inbred Strains; Myocardial Infarction; Myocardial Reperfusion Injury; Receptor, Angiotensin, Type 1; Renin; Tetrazoles; Valine; Valsartan

2011
AT1 receptor blockade limits myocardial injury and upregulates AT2 receptors during reperfused myocardial infarction.
    Molecular and cellular biochemistry, 2004, Volume: 260, Issue:1-2

    Topics: Angiotensin II Type 1 Receptor Blockers; Animals; Biphenyl Compounds; Blood Pressure; Dogs; Heart Rate; Heart Ventricles; Hemodynamics; Irbesartan; Myocardial Infarction; Myocardial Reperfusion Injury; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Tetrazoles; Time Factors; Valine; Valsartan; Ventricular Remodeling

2004
AT1 receptor blockade alters metabolic, functional and structural proteins after reperfused myocardial infarction: detection using proteomics.
    Molecular and cellular biochemistry, 2004, Volume: 263, Issue:1-2

    Topics: Angiotensin II Type 1 Receptor Blockers; Animals; ATP Synthetase Complexes; Biphenyl Compounds; Creatine Kinase; Dogs; Hemodynamics; Irbesartan; Isocitrate Dehydrogenase; Myocardial Infarction; Myocardial Reperfusion Injury; Myosin Light Chains; Proteins; Proteomics; Receptor, Angiotensin, Type 1; Tetrazoles; Valine; Valsartan; Ventricular Function, Left

2004
Cumulative effects of AT1 and AT2 receptor blockade on ischaemia-reperfusion recovery in rat hearts.
    Pharmacological research, 2005, Volume: 51, Issue:6

    Topics: Angiotensin II; Angiotensin II Type 1 Receptor Blockers; Angiotensin II Type 2 Receptor Blockers; Animals; Heart; In Vitro Techniques; Male; Myocardial Reperfusion Injury; Rats; Rats, Wistar; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Recovery of Function; Tetrazoles; Valine; Valsartan; Ventricular Function, Left

2005
[Mechanism of cardioprotection against ischemia/reperfusion injury by valsartan: an experiment with isolated rat hearts].
    Zhonghua yi xue za zhi, 2005, Dec-14, Volume: 85, Issue:47

    Topics: Animals; Bradykinin; Bradykinin B2 Receptor Antagonists; Cardiotonic Agents; Creatine Kinase, MB Form; Disease Models, Animal; In Vitro Techniques; Male; Myocardial Reperfusion Injury; Random Allocation; Rats; Rats, Sprague-Dawley; Receptor, Bradykinin B2; Tetrazoles; Valine; Valsartan; Ventricular Function, Left

2005
Valsartan reverses post-translational modifications of the delta-subunit of ATP synthase during in vivo canine reperfused myocardial infarction.
    Proteomics, 2007, Volume: 7, Issue:12

    Topics: Amino Acids; Angiotensin II Type 2 Receptor Blockers; Animals; Apoptosis; Dogs; Mitochondrial Proton-Translocating ATPases; Myocardial Infarction; Myocardial Reperfusion Injury; Necrosis; Phosphorylation; Protein Processing, Post-Translational; Protein Subunits; Proteomics; Receptor, Angiotensin, Type 2; Tetrazoles; Valine; Valsartan; Ventricular Dysfunction, Left

2007
Pharmacological profile of valsartan, a non-peptide angiotensin II type 1 receptor antagonist. 4th communication: improvement of heart failure of rats with myocardial infarction by valasartan.
    Arzneimittel-Forschung, 1997, Volume: 47, Issue:5

    Topics: Angiotensin Receptor Antagonists; Animals; Antihypertensive Agents; Blood Pressure; Body Weight; Cardiomegaly; Enalapril; Male; Myocardial Infarction; Myocardial Ischemia; Myocardial Reperfusion Injury; Organ Size; Rats; Receptor, Angiotensin, Type 1; Receptor, Angiotensin, Type 2; Tetrazoles; Valine; Valsartan; Vascular Resistance; Ventricular Function, Left

1997