valencene and Body-Weight

valencene has been researched along with Body-Weight* in 1 studies

Other Studies

1 other study(ies) available for valencene and Body-Weight

ArticleYear
Valencene post-treatment exhibits cardioprotection via inhibiting cardiac hypertrophy, oxidative stress, nuclear factor- κB inflammatory pathway, and myocardial infarct size in isoproterenol-induced myocardial infarcted rats; A molecular study.
    European journal of pharmacology, 2022, Jul-15, Volume: 927

    The growing burden of myocardial infarction (MI) becomes a major global health issue that is accountable for considerable mortality worldwide. Hence, it is obligatory to develop a new treatment for MI having lesser side effects. Cardiac hypertrophy, oxidative stress, and inflammatory pathways play crucial roles in the pathogenesis of MI. This investigation established the anti-cardiac hypertrophic, antioxidant, anti-inflammatory, and myocardial infarct size limiting effects of valencene. Rats were induced MI by isoproterenol (100 mg/kg body weight) and then treated with valencene and cardiac sensitive markers, cardiac hypertrophy, oxidative stress, markers of inflammation, nuclear factor- κB inflammatory pathway, and myocardial infarct size was estimated/determined. The serum cardiac diagnostic markers, cardiac hypertrophy, conjugated dienes, markers of inflammation, pro-inflammatory cytokines, and myocardial infarct size were significantly (P < 0.05) increased by isoproterenol. Further, antioxidant enzymes and anti-inflammatory cytokine gene were significantly (P < 0.05) decreased in the heart. The 2, 3, 5-triphenyl tetrazolium chloride dye staining revealed a larger infarct size. Moreover, histological results of myocardial infarcted rat's cardiac tissue revealed separation of cardiac muscle fibers, necrosis, and inflammatory cells. Post-treatment with valencene (12 mg/kg body weight) orally, daily, for two weeks to isoproterenol-induced myocardial infarcted rats reversed all above said structural, biochemical, molecular, and histological parameters investigated, by its anti-cardiac hypertrophic, antioxidant, anti-inflammatory, and myocardial infarct size limiting effects. Thus, valencene is a potential candidate for inhibiting cardiac hypertrophy, oxidative stress, nuclear factor- κB inflammatory pathway, and myocardial infarct size and exhibited cardioprotection in MI.

    Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Biomarkers; Body Weight; Cardiomegaly; Inflammation; Isoproterenol; Myocardial Infarction; Myocardium; Myocytes, Cardiac; NF-kappa B; Oxidative Stress; Rats; Rats, Wistar; Sesquiterpenes

2022