valbenazine has been researched along with Dyskinesia--Drug-Induced* in 3 studies
2 review(s) available for valbenazine and Dyskinesia--Drug-Induced
Article | Year |
---|---|
Miscellaneous treatments for antipsychotic-induced tardive dyskinesia.
Antipsychotic (neuroleptic) medication is used extensively to treat people with chronic mental illnesses. Its use, however, is associated with adverse effects, including movement disorders such as tardive dyskinesia (TD) - a problem often seen as repetitive involuntary movements around the mouth and face. This review, one in a series examining the treatment of TD, covers miscellaneous treatments not covered elsewhere.. To determine whether drugs, hormone-, dietary-, or herb-supplements not covered in other Cochrane reviews on TD treatments, surgical interventions, electroconvulsive therapy, and mind-body therapies were effective and safe for people with antipsychotic-induced TD.. We searched the Cochrane Schizophrenia Group's Study-Based Register of Trials including trial registers (16 July 2015 and 26 April 2017), inspected references of all identified studies for further trials and contacted authors of trials for additional information.. We included reports if they were randomised controlled trials (RCTs) dealing with people with antipsychotic-induced TD and schizophrenia or other chronic mental illnesses who remained on their antipsychotic medication and had been randomly allocated to the interventions listed above versus placebo, no intervention, or any other intervention.. We independently extracted data from these trials and we estimated risk ratios (RR) or mean differences (MD), with 95% confidence intervals (CIs). We assumed that people who left early had no improvement. We assessed risk of bias and created 'Summary of findings' tables using GRADE.. We included 31 RCTs of 24 interventions with 1278 participants; 22 of these trials were newly included in this 2017 update. Five trials are awaiting classification and seven trials are ongoing. All participants were adults with chronic psychiatric disorders, mostly schizophrenia, and antipsychotic-induced TD. Studies were primarily of short (three to six6 weeks) duration with small samples size (10 to 157 participants), and most (61%) were published more than 20 years ago. The overall risk of bias in these studies was unclear, mainly due to poor reporting of allocation concealment, generation of the sequence, and blinding.Nineteen of the 31 included studies reported on the primary outcome 'No clinically important improvement in TD symptoms'. Two studies found moderate-quality evidence of a benefit of the intervention compared with placebo: valbenazine (RR 0.63, 95% CI 0.46 to 0.86, 1 RCT, n = 92) and extract of Ginkgo biloba (RR 0.88, 95% CI 0.81 to 0.96, 1 RCT, n = 157), respectively. However, due to small sample sizes we cannot be certain of these effects.We consider the results for the remaining interventions to be inconclusive: Low- to very low-quality evidence of a benefit was found for buspirone (RR 0.53, 95% CI 0.33 to 0.84, 1 RCT, n = 42), dihydrogenated ergot alkaloids (RR 0.45, 95% CI 0.21 to 0.97, 1 RCT, n = 28), hypnosis or relaxation, (RR 0.45, 95% CI 0.21 to 0.94, 1 study, n = 15), pemoline (RR 0.48, 95% CI 0.29 to 0.77, 1 RCT, n = 46), promethazine (RR 0.24, 95% CI 0.11 to 0.55, 1 RCT, n = 34), insulin (RR 0.52, 95% CI 0.29 to 0.96, 1 RCT, n = 20), branched chain amino acids (RR 0.79, 95% CI 0.63 to 1.00, 1 RCT, n = 52), and isocarboxazid (RR 0.24, 95% CI 0.08 to 0.71, 1 RCT, n = 20). There was low- to very low-certainty evidence of no difference between intervention and placebo or no treatment for the following interventions: melatonin (RR 0.89, 95% CI 0.71 to 1.12, 2 RCTs, n = 32), lithium (RR 1.59, 95% CI 0.79 to 3.23, 1 RCT, n = 11), ritanserin (RR 1.00, 95% CI 0.70 to 1.43, 1 RCT, n = 10), selegiline (RR 1.37, 95% CI 0.96 to 1.94, 1 RCT, n = 33), oestrogen (RR 1.18, 95% CI 0.76 to 1.83, 1 RCT, n = 12), and gamma-linolenic acid (RR 1.00, 95% CI 0.69 to 1.45, 1 RCT, n = 16).None of the included studies reported on the other primary outcome, 'no clinically significant extrapyramidal adverse effects'.. This review has found that the use of valbenazine or extract of Ginkgo biloba may be effective in relieving the symptoms of tardive dyskinesia. However, since only one RCT has investigated each one of these compounds, we are awaiting results from ongoing trials to confirm these results. Results for the remaining interventions covered in this review must be considered inconclusive and these compounds probably should only be used within the context of a well-designed evaluative study. Topics: Adrenergic Uptake Inhibitors; Adult; Anti-Anxiety Agents; Antipsychotic Agents; Dihydroergotoxine; Dyskinesia, Drug-Induced; Ginkgo biloba; Humans; Hypnosis; Plant Extracts; Randomized Controlled Trials as Topic; Relaxation Therapy; Tetrabenazine; Valine | 2018 |
Current Methods for the Treatment and Prevention of Drug-Induced Parkinsonism and Tardive Dyskinesia in the Elderly.
Drug-induced parkinsonism (DIP) and tardive dyskinesia (TD) are iatrogenic consequences of antidopaminergic drugs. Both are particularly prevalent among the elderly and those with dementia. However, despite their prevalence, these disorders are often overlooked. Both entities share risk factors, physiopathological mechanisms and, to some degree, therapeutic approaches. Withdrawing the causal agent, reducing the dose or switching to a less potent antidopaminergic drug should be the first therapeutic options. Here we review both entities and emerging therapies including the recently approved drugs deutetrabenazine and valbenazine. We discuss relevant aspects for clinical practice such as new diagnostic techniques and the latest advances in the understanding of DIP and TD. Topics: Aged; Dementia; Dyskinesia, Drug-Induced; Humans; Parkinsonian Disorders; Risk Factors; Tardive Dyskinesia; Tetrabenazine; Valine | 2018 |
1 other study(ies) available for valbenazine and Dyskinesia--Drug-Induced
Article | Year |
---|---|
Valbenazine granted breakthrough drug status for treating tardive dyskinesia.
The chronic use and high dosing of typical neuroleptics or centrally acting dopamine receptor blocking antiemetics predispose patients to the onset of tardive syndromes. One particular subtype, tardive dyskinesia, is characterized by rapid, repetitive, stereotypic, involuntary movements of the face, limbs or trunk. The inhibition of the vesicular monoamine transporter system, using tetrabenazine therapy, improves the severity of tardive dyskinesia. But there are also drawbacks to tetrabenazine treatment, such as a fluctuating response and the need for frequent intake due to its rapid metabolism. Clinical research on the potentially more efficacious and easier to use tetrabenazine analogs is already under way. One of them is valbenazine, the purified parent drug of the (+)-α-isomer of tetrabenazine. The FDA lowered approval hurdles for valbenazine due to a successful Phase II trial, which showed a distinctive improvement in tardive dyskinesia symptoms during valbenazine administration. This resurgence in the clinical research of tardive syndrome therapy is most welcome. This author notes that the putative long-term side effects of valbenazine should carefully be investigated in the future via naturalistic observational trials. Furthermore, valbenazine may also support the onset of symptoms, such as Parkinsonism and depression, with chronic administration, as it, to a certain extent, shares the mode of action of tetrabenazine. Topics: Anti-Dyskinesia Agents; Antipsychotic Agents; Drug Approval; Dyskinesia, Drug-Induced; Humans; Severity of Illness Index; Tetrabenazine; United States; United States Food and Drug Administration; Valine | 2015 |