ursodoxicoltaurine and Myocardial-Infarction

ursodoxicoltaurine has been researched along with Myocardial-Infarction* in 4 studies

Other Studies

4 other study(ies) available for ursodoxicoltaurine and Myocardial-Infarction

ArticleYear
Role of α-crystallin B as a regulatory switch in modulating cardiomyocyte apoptosis by mitochondria or endoplasmic reticulum during cardiac hypertrophy and myocardial infarction.
    Cell death & disease, 2013, Apr-04, Volume: 4

    Cardiac hypertrophy and myocardial infarction (MI) are two major causes of heart failure with different etiologies. However, the molecular mechanisms associated with these two diseases are not yet fully understood. So, this study was designed to decipher the process of cardiomyocyte apoptosis during cardiac hypertrophy and MI in vivo. Our study revealed that mitochondrial outer membrane channel protein voltage-dependent anion channel-1 (VDAC1) was upregulated exclusively during cardiac hypertrophy, whereas 78 kDa glucose-regulated protein (GRP78) was exclusively upregulated during MI, which is an important upstream regulator of the endoplasmic reticulum (ER) stress pathway. Further downstream analysis revealed that mitochondrial pathway of apoptosis is instrumental in case of hypertrophy, whereas ER stress-induced apoptosis is predominant during MI, which was confirmed by treatment with either siRNA against VDAC1 or ER stress inhibitor tauroursodeoxycholic acid (TUDCA). Very interestingly, our data also showed that the expression and interaction of small heat-shock protein α-crystallin B (CRYAB) with VDAC1 was much more pronounced during MI compared with either hypertrophy or control. The study demonstrated for the first time that two different organelles--mitochondria and ER have predominant roles in mediating cardiomyocyte death signaling during hypertrophy and MI, respectively, and activation of CRYAB acts as a molecular switch in bypassing mitochondrial pathway of apoptosis during MI.

    Topics: Animals; Apoptosis; Cardiomegaly; Endoplasmic Reticulum; Endoplasmic Reticulum Stress; Gene Expression Regulation; Heat-Shock Proteins; Male; Mitochondria; Myocardial Infarction; Myocytes, Cardiac; Rats; Rats, Wistar; RNA, Small Interfering; Signal Transduction; Taurochenodeoxycholic Acid; Voltage-Dependent Anion Channel 1

2013
Endoplasmic reticulum stress contributes to heart protection induced by cyclophilin D inhibition.
    Basic research in cardiology, 2013, Volume: 108, Issue:4

    Preventing cyclophilin D (cypD) translocation to the inner mitochondrial membrane can limit lethal reperfusion injury through the inhibition of the opening of the mitochondrial permeability transition pore. Inhibition or loss of function of cypD may also result into an endoplasmic reticulum (ER) stress that has been shown to alter cell survival. We therefore questioned whether ER stress might play a role in the protection induced by CypD deficiency or inhibition. CypD-KO and NIM811 (a CypD inhibitor)-treated mice were subjected to a prolonged ischemia-reperfusion (I/R). Area at risk and infarct size was measured using blue dye and triphenyltetrazolium chloride staining. ER stress markers were measured in the hearts during the reperfusion phase. As expected, cypD-KO mice exhibited a decreased infarct size when compared to wild-type mice (8 ± 1 vs. 20 ± 4% of left ventricular weight; p < 0.01). CypD-deficient mice displayed an increased expression of ER stress proteins such as eukaryotic initiation factor 2α (eIF2α) or glucose regulated protein 78 (Grp78 or Bip). The ER stress inhibitor TUDCA prevented the infarct size reduction afforded by the loss of cypD function (mean infarct size averaged 21 ± 4% of LV weight, p < 0.01 vs. cypD-KO). Similar results were obtained when NIM811, an analog of cyclosporine A, was used to pharmacologically (instead of genetically) inhibit cypD function. This study suggests that the ER stress induced by the inhibition of cypD function plays a key role in protecting the heart against lethal ischemia-reperfusion injury.

    Topics: Animals; Cyclophilins; Cyclosporine; Cyclosporins; Disease Models, Animal; Endoplasmic Reticulum Chaperone BiP; Endoplasmic Reticulum Stress; Heart; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Mitochondrial Membranes; Myocardial Infarction; Myocardial Reperfusion Injury; Peptidyl-Prolyl Isomerase F; Taurochenodeoxycholic Acid

2013
Endoplasmic reticulum stress in diabetic hearts abolishes erythropoietin-induced myocardial protection by impairment of phospho-glycogen synthase kinase-3beta-mediated suppression of mitochondrial permeability transition.
    Diabetes, 2009, Volume: 58, Issue:12

    Alteration in endoplasmic reticulum (ER) stress in diabetic hearts and its effect on cytoprotective signaling are unclear. Here, we examine the hypothesis that ER stress in diabetic hearts impairs phospho-glycogen synthase kinase (GSK)-3beta-mediated suppression of mitochondrial permeability transition pore (mPTP) opening, compromising myocardial response to cytoprotective signaling.. A rat model of type 2 diabetes (OLETF) and its control (LETO) were treated with tauroursodeoxycholic acid (TUDCA) (100 mg . kg(-1) . day(-1) for 7 days), an ER stress modulator. Infarction was induced by 20-min coronary occlusion and 2-h reperfusion.. Levels of ER chaperones (GRP78 and GRP94) in the myocardium and level of nonphoshopho-GSK-3beta in the mitochondria were significantly higher in OLETF than in LETO rats. TUDCA normalized levels of GRP78 and GRP94 and mitochondrial GSK-3beta in OLETF rats. Administration of erythropoietin (EPO) induced phosphorylation of Akt and GSK-3beta and reduced infarct size (% risk area) from 47.4 +/- 5.2% to 23.9 +/- 3.5% in LETO hearts. However, neither phosphorylation of Akt and GSK-3beta nor infarct size limitation was induced by EPO in OLETF rats. The threshold for mPTP opening was significantly lower in mitochondria from EPO-treated OLETF rats than in those from EPO-treated LETO rats. TUDCA restored responses of GSK-3beta, mPTP opening threshold, and infarct size to EPO receptor activation in OLETF rats. There was a significant correlation between mPTP opening threshold and phospho-GSK-3beta-to-total GSK-3beta ratio in the mitochondrial fraction.. Disruption of protective signals leading to GSK-3beta phosphorylation and increase in mitochondrial GSK-3beta are dual mechanisms by which increased ER stress inhibits EPO-induced suppression of mPTP opening and cardioprotection in diabetic hearts.

    Topics: Animals; Blood Glucose; Body Weight; Calcium; Diabetes Mellitus, Type 2; Endoplasmic Reticulum; Erythropoietin; Glycogen Synthase Kinase 3; Glycogen Synthase Kinase 3 beta; Immunoblotting; Intracellular Membranes; Male; Membrane Potential, Mitochondrial; Mitochondria, Heart; Myocardial Infarction; Myocardial Reperfusion; Myocardium; Myocytes, Cardiac; Permeability; Phosphorylation; Rats; Rats, Inbred OLETF; Taurochenodeoxycholic Acid

2009
Administration of tauroursodeoxycholic acid (TUDCA) reduces apoptosis following myocardial infarction in rat.
    The American journal of Chinese medicine, 2007, Volume: 35, Issue:2

    Black bear bile has been used in traditional Chinese medicine to treat liver and eye related illnesses for centuries. A major constituent of bile is ursodeoxycholic acid (UDCA). Recent analysis of the cellular effects of UDCA and its taurine conjugate tauroursodeoxycholic acid (TUDCA) have demonstrated their antiapoptotic properties through regulation of Bcl-2 family and survival signaling proteins (Bax, Bad, phosphatidylinositol-3-kinase). In this study, we tested the hypothesis that TUDCA administered to rats prior to a myocardial infarction (MI) would exhibit anti-apoptotic effects and improve cardiac function. Prior to ligation of the left anterior descending (LAD) coronary artery, TUDCA (50 mg/ml, 400 mg/kg, IV) or PBS was administered to rats. Animals were sacrificed 24 hours after ligation for terminal transferase-mediated dUTP-digoxigenin nick end-labeling (TUNEL) and caspase-3 activity to assess apoptosis. Additional TUDCA or PBS treated rats underwent pre-operative,1 and 4 week transthoracic ultrasounds to assess heart function by quantification of shortening fraction (SF) and infarct area. TUNEL labeling of the cardiac tissue revealed a significant reduction in apoptotic cells in rats given TUDCA prior to ischemic injury (p = 0.05). In support of reducing apoptosis, caspase-3 activity in the TUDCA treated animals also decreased (p = 0.02). By 4 weeks, a significantly smaller infarct area was present in the TUDCA group compared to the PBS group (0.05 vs. 0.13 cm(2), p = NS) and there was also an improvement in SF. The results provide evidence for TUDCA as a viable treatment for reducing apoptosis in a model of myocardial infarction. Additional studies will distinguish the functional result of improved cell survival following infarction, suggesting the potential for clinical application of this anti-apoptotic drug in treatment of acute MI.

    Topics: Animals; Apoptosis; Caspase 3; Cholagogues and Choleretics; Echocardiography; In Situ Nick-End Labeling; Models, Animal; Myocardial Infarction; Myocardium; Rats; Stroke Volume; Taurochenodeoxycholic Acid

2007