ursodoxicoltaurine has been researched along with Diabetic-Retinopathy* in 2 studies
2 other study(ies) available for ursodoxicoltaurine and Diabetic-Retinopathy
Article | Year |
---|---|
Protection of tauroursodeoxycholic acid on high glucose-induced human retinal microvascular endothelial cells dysfunction and streptozotocin-induced diabetic retinopathy rats.
Tauroursodeoxycholic acid (TUDCA), one of the main ingredients from bear gall which hold "Clearing heat and detoxification, Removing liver fire for improving eyesight" functions, is formed by the conjugation of ursodeoxycholic acid (UDCA) with taurine. However, the limited information of TUDCA on protecting diabetic retinopathy (DR) has been known. The present study was conducted to evaluate the protection of TUDCA on high glucose-induced human retinal microvascular endothelial cells (HRMECs) dysfunction and streptozotocin (STZ)-induced diabetic retinopathy (DR) rats and the possible mechanism underlying was also explored.. The proliferation of high glucose-induced HRMECs was determined by MTT assay. DR rats' model was established by an administration of high-glucose-fat diet and an intraperitoneal injection of STZ (30mg/kg). The cell supernatant and rats' serum were collected for the assays of NO content by ELISA kits. Retinas were stained with hematoxylin and eosin (HE) to observe pathological changes. Immunohistochemical assay was applied to examine the protein expression of ICAM-1, NOS, NF-κB p65 and VEGF in rat retinas. Furthermore, western blot analysis was carried out to examine the protein expression of ICAM-1, NOS, NF-κB p65 and VEGF in high glucose-induced HRMECs.. After treating with TUDCA, high glucose-induced HRMECs proliferation could be significantly inhibited. TUDCA (5.0μM, 25.0μM and 125.0μM) could decrease NO content in high glucose-induced HRMECs. Furthermore, TUDCA (500mg/kg/d and 250mg/kg/d) also decrease NO content in serum of DR rats. Additionally, both immunocytochemistry analysis and western blot analysis showed that the over-expression of ICAM-1, NOS, NF-κB p65 and VEGF were significantly decreased by TUDCA.. The data indicated that TUDCA could ameliorate DR by decreasing NO content and down-regulating the protein expression of ICAM-1, NOS, NF-κB p65 and VEGF. Thus, our experimental results suggested that TUDCA might be a potential drug for the prevention and treatment of DR. Topics: Animals; Diabetes Mellitus, Experimental; Diabetic Retinopathy; Endothelial Cells; Gene Expression Regulation, Enzymologic; Glucose; Humans; Intercellular Adhesion Molecule-1; Male; Mice; Nitric Oxide Synthase; Rats; Rats, Sprague-Dawley; Retinal Vessels; Taurochenodeoxycholic Acid; Transcription Factor RelA | 2016 |
Increased expression of phosphorylated c-Jun and phosphorylated c-Jun N-terminal kinase associated with neuronal cell death in diabetic and high glucose exposed rat retinas.
The aim of this study is to examine whether the increased expression of phosphorylated c-Jun (p-c-Jun) and phosphorylated c-Jun N-terminal kinase (p-JNK) are significantly associated with neuronal cell death in diabetic rat retinas and retinas exposed to high glucose. Retinas isolated from six adult male Sprague-Dawley rats and six streptozotocin-induced diabetic rats (DM) were cultured in serum-free medium. The explants from non-diabetic controls were cultured in normal-glucose (N) or high-glucose (HG) medium. Furthermore, neurotrophin-4 (NT-4) and Taurine-conjugated ursodeoxycholic acid (TUDCA) were incubated in HG medium. After 7 days, the numbers of regenerating neurites were counted per explant. After counting, the explants were fixed, cryosectioned, and stained by TUNEL, and also immunostained for p-c-Jun and p-JNK. The numbers of TUNEL-positive, p-c-Jun- and p-JNK-immunopositive cells in the GCL were significantly higher and the numbers of regenerating neurites were significantly lower in the HG and the DM groups than in the N groups. In the HG groups supplemented with NT-4 and TUDCA, the numbers of TUNEL-positive, p-c-Jun- and p-JNK-immunopositive cells were significantly lower and the numbers of neurites were significantly higher than in the HG group without NT-4 and TUDCA. Increased expression of p-c-Jun and p-JNK is associated with neuronal cell death in diabetic rat retinas and retinas exposed to high glucose. Neuroprotective effect of TUDCA and NT-4 is correlated with the suppression of p-c-Jun and p-JNK expression. These results provide a better understanding of the neurodegenerative process underlying DR. Topics: Animals; Apoptosis; Cell Death; Diabetes Mellitus, Experimental; Diabetic Retinopathy; Glucose; In Vitro Techniques; JNK Mitogen-Activated Protein Kinases; Male; Nerve Growth Factors; Nerve Regeneration; Neurites; Neurons; Neuroprotective Agents; Phosphorylation; Proto-Oncogene Proteins c-jun; Rats; Rats, Sprague-Dawley; Retina; Retinal Ganglion Cells; Streptozocin; Taurochenodeoxycholic Acid | 2014 |