uroguanylin has been researched along with Inflammatory-Bowel-Diseases* in 3 studies
1 review(s) available for uroguanylin and Inflammatory-Bowel-Diseases
Article | Year |
---|---|
Guanylate Cyclase C: A Current Hot Target, from Physiology to Pathology.
Guanylate cyclase C (GC-C) receptor is a transmembrane receptor, predominantly expressed in intestinal epithelial cells, which is considered to play a main role in homeostasis and function of the digestive tract. The endogenous ligands for this receptor are the paracrine hormones uroguanylin and guanylin. Upon ligand binding, GC-C receptors increase cyclic guanosine monophosphate (cGMP) levels, regulating a variety of key cell-type specific processes such as chloride and bicarbonate secretion, epithelial cell growth, regulation of intestinal barrier integrity and visceral sensitivity. It has been suggested that GC-C acts as an intestinal tumor suppressor with the potential to prevent the initiation and progression of colorectal cancer. In fact, loss of ligand expression is a universal step in sporadic colorectal carcinogenesis. Interestingly, the role of GC-C is not limited to the digestive tract but it has been extended to several other systems such as the cardiovascular system, kidney, and the central nervous system, where it has been involved in a gut-hypothalamus endocrine axis regulating appetite. Objetive: In this review we summarize the physiology of the GC-C receptor and its ligands, focusing on newly developed drugs like linaclotide, and their suggested role to reverse/prevent the diseases in which the receptor is involved.. Available data points toward a relationship between uroguanylin and guanylin and their receptor and pathological processes like gastrointestinal and renal disorders, colorectal cancer, obesity, metabolic syndrome and mental disorders among others. Recent pharmacological developments in the regulation of GC-receptor may involve further improvements in the treatment of relevant diseases. Topics: Animals; Colorectal Neoplasms; Cyclic GMP; Gastrointestinal Hormones; Guanylate Cyclase; Humans; Inflammatory Bowel Diseases; Intestinal Mucosa; Kidney Diseases; Natriuretic Peptides; Obesity; Protein Binding; Protein Transport; Receptors, Peptide; Signal Transduction | 2018 |
2 other study(ies) available for uroguanylin and Inflammatory-Bowel-Diseases
Article | Year |
---|---|
Colonic epithelial cell diversity in health and inflammatory bowel disease.
The colonic epithelium facilitates host-microorganism interactions to control mucosal immunity, coordinate nutrient recycling and form a mucus barrier. Breakdown of the epithelial barrier underpins inflammatory bowel disease (IBD). However, the specific contributions of each epithelial-cell subtype to this process are unknown. Here we profile single colonic epithelial cells from patients with IBD and unaffected controls. We identify previously unknown cellular subtypes, including gradients of progenitor cells, colonocytes and goblet cells within intestinal crypts. At the top of the crypts, we find a previously unknown absorptive cell, expressing the proton channel OTOP2 and the satiety peptide uroguanylin, that senses pH and is dysregulated in inflammation and cancer. In IBD, we observe a positional remodelling of goblet cells that coincides with downregulation of WFDC2-an antiprotease moleculeĀ that we find to be expressed by goblet cellsĀ and that inhibits bacterial growth. In vivo, WFDC2 preserves the integrity of tight junctions between epithelial cells and prevents invasion by commensal bacteria and mucosal inflammation. We delineate markers and transcriptional states, identify a colonic epithelial cell and uncover fundamental determinants of barrier breakdown in IBD. Topics: Animals; Biomarkers; Colitis, Ulcerative; Colon; Epithelial Cells; Genetic Predisposition to Disease; Goblet Cells; Health; Humans; Hydrogen-Ion Concentration; Inflammatory Bowel Diseases; Intestinal Mucosa; Ion Channels; Male; Mice; Natriuretic Peptides; Proteins; Single-Cell Analysis; Stem Cells; Tight Junctions; Transcription, Genetic; WAP Four-Disulfide Core Domain Protein 2 | 2019 |
Emerging treatments in Neurogastroenterology: Perspectives of guanylyl cyclase C agonists use in functional gastrointestinal disorders and inflammatory bowel diseases.
Functional gastrointestinal disorders (FGID) and inflammatory bowel diseases (IBD) are the most frequent pathologic conditions affecting the gastrointestinal (GI) tract and both significantly reduce patients' quality of life. Recent studies suggest that guanylyl cyclase C (GC-C) expressed in the GI tract constitutes a novel pharmacological target in the treatment of FGID and IBD. Endogenous GC-C agonists - guanylin peptides: guanylin and uroguanylin, by the regulation of water and electrolyte transport, are involved in the maintenance of homeostasis in the intestines and integrity of the intestinal mucosa. Linaclotide, a synthetic agonist of GC-C was approved by Food and Drug Administration and European Medicines Agency as a therapeutic in constipation-predominant irritable bowel syndrome (IBS-C) and chronic idiopathic constipation (CIC). Lately, several preclinical and clinical trials focused on assessment of therapeutic properties of synthetic agonists of uroguanylin, plecanatide, and SP-333. Plecanatide is currently tested as a potential therapeutic in diseases related to constipation and SP-333 is a promising drug in ulcerative colitis treatment.. Here, we discuss the most recent findings and future trends on the development of GC-C agonists and their use in clinical trials. Topics: Clinical Trials as Topic; Constipation; Female; Gastroenterology; Gastrointestinal Diseases; Gastrointestinal Hormones; Humans; Inflammatory Bowel Diseases; Male; Natriuretic Peptides; Peptides; Receptors, Enterotoxin; Receptors, Guanylate Cyclase-Coupled; Receptors, Peptide; Signal Transduction | 2015 |