uroguanylin has been researched along with Colonic-Neoplasms* in 9 studies
3 review(s) available for uroguanylin and Colonic-Neoplasms
Article | Year |
---|---|
Guanylyl cyclase C signaling axis and colon cancer prevention.
Colorectal cancer (CRC) is a major cause of cancer-related mortality and morbidity worldwide. While improved treatments have enhanced overall patient outcome, disease burden encompassing quality of life, cost of care, and patient survival has seen little benefit. Consequently, additional advances in CRC treatments remain important, with an emphasis on preventative measures. Guanylyl cyclase C (GUCY2C), a transmembrane receptor expressed on intestinal epithelial cells, plays an important role in orchestrating intestinal homeostatic mechanisms. These effects are mediated by the endogenous hormones guanylin (GUCA2A) and uroguanylin (GUCA2B), which bind and activate GUCY2C to regulate proliferation, metabolism and barrier function in intestine. Recent studies have demonstrated a link between GUCY2C silencing and intestinal dysfunction, including tumorigenesis. Indeed, GUCY2C silencing by the near universal loss of its paracrine hormone ligands increases colon cancer susceptibility in animals and humans. GUCY2C's role as a tumor suppressor has opened the door to a new paradigm for CRC prevention by hormone replacement therapy using synthetic hormone analogs, such as the FDA-approved oral GUCY2C ligand linaclotide (Linzess™). Here we review the known contributions of the GUCY2C signaling axis to CRC, and relate them to a novel clinical strategy targeting tumor chemoprevention. Topics: Animals; Carcinogenesis; Cell Cycle; Colonic Neoplasms; Cyclic GMP; Enterotoxins; Gastrointestinal Hormones; Genomics; Homeostasis; Hormones; Humans; Inflammation; Ligands; Mutation; Natriuretic Peptides; Paracrine Communication; Receptors, Enterotoxin; Receptors, Guanylate Cyclase-Coupled; Receptors, Peptide; Signal Transduction; Treatment Outcome | 2016 |
The uroguanylin system and human disease.
The uroguanylin system is a newly discovered endocrine/paracrine system that may have a role in the regulation of salt balance, appetite and gut health. The precursor pro-uroguanylin is predominantly synthesized in the gut, although there may be other sites of synthesis, including the kidney tubules. Products from pro-uroguanylin may mediate natriuresis following oral consumption of a salt load through both GC-C (guanylate cyclase C)-dependent and -independent mechanisms, and recent evidence suggests a role in appetite regulation. Local paracrine effects in the gut through GC-C stimulation may have tumour-suppressing actions through the regulation of cell proliferation and metabolism. Although most information on this system has been derived from knockout models, recent human studies have indicated possible roles in heart failure and renal failure. An improved understanding of the nature of its natriuretic, appetite and tumour-suppressing actions may facilitate the discovery of new therapies for heart failure, obesity and cancer prophylaxis. Topics: Amino Acid Sequence; Appetite Regulation; Colonic Neoplasms; Endocrine System; Heart Failure; Humans; Hypertension; Intestinal Mucosa; Irritable Bowel Syndrome; Kidney; Models, Biological; Molecular Sequence Data; Natriuretic Peptides; Paracrine Communication; Receptors, Guanylate Cyclase-Coupled; Signal Transduction; Species Specificity | 2012 |
Guanylin regulatory peptides: structures, biological activities mediated by cyclic GMP and pathobiology.
The guanylin family of bioactive peptides consists of three endogenous peptides, including guanylin, uroguanylin and lymphoguanylin, and one exogenous peptide toxin produced by enteric bacteria. These small cysteine-rich peptides activate cell-surface receptors, which have intrinsic guanylate cyclase activity, thus modulating cellular function via the intracellular second messenger, cyclic GMP. Membrane guanylate cyclase-C is an intestinal receptor for guanylin and uroguanylin that is responsible for stimulation of Cl- and HCO3- secretion into the intestinal lumen. Guanylin and uroguanylin are produced within the intestinal mucosa to serve in a paracrine mechanism for regulation of intestinal fluid and electrolyte secretion. Enteric bacteria secrete peptide toxin mimics of uroguanylin and guanylin that activate the intestinal receptors in an uncontrolled fashion to produce secretory diarrhea. Opossum kidney guanylate cyclase is a key receptor in the kidney that may be responsible for the diuretic and natriuretic actions of uroguanylin in vivo. Uroguanylin serves in an endocrine axis linking the intestine and kidney where its natriuretic and diuretic actions contribute to the maintenance of Na+ balance following oral ingestion of NaCl. Lymphoguanylin is highly expressed in the kidney and myocardium where this unique peptide may act locally to regulate cyclic GMP levels in target cells. Lymphoguanylin is also produced in cells of the lymphoid-immune system where other physiological functions may be influenced by intracellular cyclic GMP. Observations of nature are providing insights into cellular mechanisms involving guanylin peptides in intestinal diseases such as colon cancer and diarrhea and in chronic renal diseases or cardiac disorders such as congestive heart failure where guanylin and/or uroguanylin levels in the circulation and/or urine are pathologically elevated. Guanylin peptides are clearly involved in the regulation of salt and water homeostasis, but new findings indicate that these novel peptides have diverse physiological roles in addition to those previously documented for control of intestinal and renal function. Topics: Amino Acid Sequence; Animals; Colonic Neoplasms; Cyclic GMP; Diarrhea; Gastrointestinal Hormones; Guanylate Cyclase; Humans; Intestinal Mucosa; Kidney Diseases; Molecular Sequence Data; Natriuretic Peptides; Peptides | 1999 |
6 other study(ies) available for uroguanylin and Colonic-Neoplasms
Article | Year |
---|---|
GUCY2C Signaling Opposes the Acute Radiation-Induced GI Syndrome.
High doses of ionizing radiation induce acute damage to epithelial cells of the gastrointestinal (GI) tract, mediating toxicities restricting the therapeutic efficacy of radiation in cancer and morbidity and mortality in nuclear disasters. No approved prophylaxis or therapy exists for these toxicities, in part reflecting an incomplete understanding of mechanisms contributing to the acute radiation-induced GI syndrome (RIGS). Guanylate cyclase C (GUCY2C) and its hormones guanylin and uroguanylin have recently emerged as one paracrine axis defending intestinal mucosal integrity against mutational, chemical, and inflammatory injury. Here, we reveal a role for the GUCY2C paracrine axis in compensatory mechanisms opposing RIGS. Eliminating GUCY2C signaling exacerbated RIGS, amplifying radiation-induced mortality, weight loss, mucosal bleeding, debilitation, and intestinal dysfunction. Durable expression of GUCY2C, guanylin, and uroguanylin mRNA and protein by intestinal epithelial cells was preserved following lethal irradiation inducing RIGS. Oral delivery of the heat-stable enterotoxin (ST), an exogenous GUCY2C ligand, opposed RIGS, a process requiring p53 activation mediated by dissociation from MDM2. In turn, p53 activation prevented cell death by selectively limiting mitotic catastrophe, but not apoptosis. These studies reveal a role for the GUCY2C paracrine hormone axis as a novel compensatory mechanism opposing RIGS, and they highlight the potential of oral GUCY2C agonists (Linzess; Trulance) to prevent and treat RIGS in cancer therapy and nuclear disasters. Topics: Animals; Apoptosis; Cell Proliferation; Colonic Neoplasms; Female; Gamma Rays; Gastrointestinal Hormones; Gastrointestinal Tract; Humans; Irritable Bowel Syndrome; Lymphoma; Male; Melanoma, Experimental; Mice; Mice, Inbred C57BL; Natriuretic Peptides; Paracrine Communication; Radiation Injuries, Experimental; Receptors, Enterotoxin; Receptors, Guanylate Cyclase-Coupled; Receptors, Peptide; Signal Transduction; Tumor Cells, Cultured | 2017 |
In vitro and in vivo evaluation of 177Lu- and 90Y-labeled E. coli heat-stable enterotoxin for specific targeting of uroguanylin receptors on human colon cancers.
The human E. coli heat-stable enterotoxin (ST(h), amino acid sequence N1SSNYCCELCCNPACTGCY19) binds specifically to the guanylate cyclase C (GC-C) receptor, which is present in high density on the apical surface of normal intestinal epithelial cells as well as on the surface of human colon cancer cells. Analogs of ST(h) are currently being used as vectors targeting human colon cancers. Previous studies in our laboratory have focused on development of 111Indium-labeled ST(h) analogs for in vivo imaging applications. Here, we extend the scope of this work to include targeting of the therapeutic radionuclides 90Y and 177Lu. The peptide DOTA-F19-ST(h)(1-19) was synthesized using conventional Fmoc-based solid-phase techniques and refolded in dilute aqueous solution. The peptide was purified by RP-HPLC and characterized by MALDI-TOF MS and in vitro receptor binding assay. The DOTA-conjugate was metallated with nonradioactive Lu(III)Cl3 and Y(III)Cl3, and IC50 values of 2.6+/-0.1 and 4.2+/-0.9 nM were determined for the Lu- and Y-labeled peptides, respectively. 177Lu(III)Cl3 and 90Y(III)Cl3 labeling yielded tracer preparations that were inseparable by C18 RP-HPLC, indicating that putative differences between Lu-, Y- and In coordination spheres are not observed in the context of labeled ST(h) peptides. In vivo biodistribution studies of the 177Lu-labeled peptide in severe combined immunodeficient (SCID) mice bearing T-84 human cancer tumor xenografts showed rapid clearance from the bloodstream, with >90 %ID in the urine at 1 h pi. Localization of the tracer within tumor xenografts was 1.86+/-0.91 %ID/g at 1 h pi, a value higher than for all other tissues with the exception of kidney (2.74+/-0.24 %ID/g). At 24 h pi, >98 %ID was excreted into the urine, and 0.35+/-0.23 %ID/g remained in tumor, again higher than in all other tissues except kidney (0.91+/-0.46 %ID/g). Biodistribution results at 24 h pi for the 90Y-labeled peptide mirrored those for the 177Lu analog, in agreement with the identical behavior of the labeled analogs by C18 RP-HPLC. These results demonstrate the ability of 177Lu- and 90Y-labeled ST(h) molecules to specifically target GC-C receptors expressed on T-84 human colon cancer cells. Topics: Animals; Bacterial Toxins; Cell Line, Tumor; Colonic Neoplasms; Drug Delivery Systems; Drug Evaluation, Preclinical; Drug Stability; Escherichia coli; Female; Hot Temperature; Humans; Isotope Labeling; Lutetium; Metabolic Clearance Rate; Mice; Mice, Inbred ICR; Natriuretic Peptides; Radioisotopes; Radionuclide Imaging; Radiopharmaceuticals; Receptors, Cell Surface; Tissue Distribution; Yttrium Radioisotopes | 2006 |
Bacterial enterotoxins are associated with resistance to colon cancer.
One half million patients suffer from colorectal cancer in industrialized nations, yet this disease exhibits a low incidence in under-developed countries. This geographic imbalance suggests an environmental contribution to the resistance of endemic populations to intestinal neoplasia. A common epidemiological characteristic of these colon cancer-spared regions is the prevalence of enterotoxigenic bacteria associated with diarrheal disease. Here, a bacterial heat-stable enterotoxin was demonstrated to suppress colon cancer cell proliferation by a guanylyl cyclase C-mediated signaling cascade. The heat-stable enterotoxin suppressed proliferation by increasing intracellular cGMP, an effect mimicked by the cell-permeant analog 8-br-cGMP. The antiproliferative effects of the enterotoxin and 8-br-cGMP were reversed by L-cis-diltiazem, a cyclic nucleotide-gated channel inhibitor, as well as by removal of extracellular Ca(2+), or chelation of intracellular Ca(2+). In fact, both the enterotoxin and 8-br-cGMP induced an L-cis-diltiazem-sensitive conductance, promoting Ca(2+) influx and inhibition of DNA synthesis in colon cancer cells. Induction of this previously unrecognized antiproliferative signaling pathway by bacterial enterotoxin could contribute to the resistance of endemic populations to intestinal neoplasia, and offers a paradigm for targeted prevention and therapy of primary and metastatic colorectal cancer. Topics: Bacterial Toxins; Calcium; Cell Differentiation; Cell Division; Colonic Neoplasms; DNA; Dose-Response Relationship, Drug; Enterotoxins; Escherichia coli Proteins; Gastrointestinal Hormones; Guanylate Cyclase; Humans; Immunity, Innate; Ligands; Membrane Potentials; Natriuretic Peptides; Patch-Clamp Techniques; Peptides; Receptors, Cell Surface; Receptors, Enterotoxin; Receptors, Guanylate Cyclase-Coupled; Receptors, Peptide; Signal Transduction; Tumor Cells, Cultured | 2003 |
Guanylyl cyclase C agonists regulate progression through the cell cycle of human colon carcinoma cells.
The effects of Escherichia coli heat-stable enterotoxin (ST) and uroguanylin were examined on the proliferation of T84 and Caco2 human colon carcinoma cells that express guanylyl cyclase C (GC-C) and SW480 human colon carcinoma cells that do not express this receptor. ST or uroguanylin inhibited proliferation of T84 and Caco2 cells, but not SW480 cells, in a concentration-dependent fashion, assessed by quantifying cell number, cell protein, and [(3)H]thymidine incorporation into DNA. These agonists did not inhibit proliferation by induction of apoptosis, assessed by TUNEL (terminal deoxynucleotidyl transferase-mediated dNTP-biotin nick end labeling of DNA fragments) assay and DNA laddering, or necrosis, assessed by trypan blue exclusion and lactate dehydrogenase release. Rather, ST prolonged the cell cycle, assessed by flow cytometry and [(3)H]thymidine incorporation into DNA. The cytostatic effects of GC-C agonists were associated with accumulation of intracellular cGMP, mimicked by the cell-permeant analog 8-Br-cGMP, and reproduced and potentiated by the cGMP-specific phosphodiesterase inhibitor zaprinast but not the inactive ST analog TJU 1-103. Thus, GC-C agonists regulate the proliferation of intestinal cells through cGMP-dependent mechanisms by delaying progression of the cell cycle. These data suggest that endogenous agonists of GC-C, such as uroguanylin, may play a role in regulating the balance between epithelial proliferation and differentiation in normal intestinal physiology. Therefore, GC-C ligands may be novel therapeutic agents for the treatment of patients with colorectal cancer. Topics: Bacterial Toxins; Cell Cycle; Colonic Neoplasms; Enterotoxins; Escherichia coli Proteins; Guanylate Cyclase; Humans; Natriuretic Peptides; Peptides; Receptors, Enterotoxin; Receptors, Guanylate Cyclase-Coupled; Receptors, Peptide; Signal Transduction; Tumor Cells, Cultured | 2001 |
Uroguanylin treatment suppresses polyp formation in the Apc(Min/+) mouse and induces apoptosis in human colon adenocarcinoma cells via cyclic GMP.
The enteric peptides, guanylin and uroguanylin, are local regulators of intestinal secretion by activation of receptor-guanylate cyclase (R-GC) signaling molecules that produce cyclic GMP (cGMP) and stimulate the cystic fibrosis transmembrane conductance regulator-dependent secretion of Cl- and HCO3-. Our experiments demonstrate that mRNA transcripts for guanylin and uroguanylin are markedly reduced in colon polyps and adenocarcinomas. In contrast, a specific uroguanylin-R-GC, R-GCC, is expressed in polyps and adenocarcinomas at levels comparable with normal colon mucosa. Activation of R-GCC by uroguanylin in vitro inhibits the proliferation of T84 colon cells and elicits profound apoptosis in human colon cancer cells, T84. Therefore, down-regulation of gene expression and loss of the peptides may interfere with renewal and/or removal of the epithelial cells resulting in the formation of polyps, which can progress to malignant cancers of the colon and rectum. Oral replacement therapy with human uroguanylin was used to evaluate its effects on the formation of intestinal polyps in the Min/+ mouse model for colorectal cancer. Uroguanylin significantly reduces the number of polyps found in the intestine of Min/+ mice by approximately 50% of control. Our findings suggest that uroguanylin and guanylin regulate the turnover of epithelial cells within the intestinal mucosa via activation of a cGMP signaling mechanism that elicits apoptosis of target enterocytes. The intestinal R-GC signaling molecules for guanylin regulatory peptides are promising targets for prevention and/or therapeutic treatment of intestinal polyps and cancers by oral administration of human uroguanylin. Topics: Adenocarcinoma; Adenomatous Polyposis Coli; Aged; Aged, 80 and over; Amino Acid Sequence; Animals; Apoptosis; Caco-2 Cells; Colonic Neoplasms; Cyclic GMP; Down-Regulation; Female; Gastrointestinal Hormones; Gene Expression Regulation, Neoplastic; Humans; Male; Mice; Mice, Inbred C57BL; Middle Aged; Molecular Sequence Data; Natriuretic Peptides; Peptides; Receptors, Cell Surface; RNA, Messenger; Tumor Cells, Cultured | 2000 |
Synthesis, biological activity and isomerism of guanylate cyclase C-activating peptides guanylin and uroguanylin.
Recently, the peptides guanylin and uroguanylin were identified as endogenous ligands of the membrane-bound guanylate cyclase C (GC-C) that is mainly expressed in the intestinal epithelium. In the present study, bioactive guanylin and uroguanylin have been prepared by solid-phase methodology using Fmoc/HBTU chemistry. The two disulfide bonds with relative 1/3 and 2/4 connectivity have been introduced selectively by air oxidation of thiol groups and iodine treatment of Cys(Acm) residues. Using this strategy, several sequential derivatives were prepared. Temperature-dependent HPLC characterization of the bioactive products revealed that guanylin-related peptides exist as a mixture of two compounds. The isoforms are interconverted within approximately 90 min, which prevents their separate characterization. This effect was not detected for uroguanylin-like peptides. Synthetic peptides were tested for their potential to activate GC-C in cultured human colon carcinoma cells (T84), known to express high levels of GC-C. The results obtained show that both disulfide bonds are necessary for GC-C activation. The presence of the amino-terminally neighboring residues of Cys104 for guanylin and Cys100 for uroguanylin has been found to be essential for GC-C stimulation. Unexpectedly, a hybrid peptide obtained from substitution of the central tripeptide AYA of guanylin by the tripeptide VNV of uroguanylin was not bioactive. Topics: Amino Acid Sequence; Animals; Chlorides; Chromatography, High Pressure Liquid; Colonic Neoplasms; Cyclic GMP; Enzyme Activation; Female; Gastrointestinal Hormones; Guanylate Cyclase; Humans; Ion Transport; Molecular Sequence Data; Natriuretic Peptides; Peptides; Protein Conformation; Rats; Rats, Wistar; Tumor Cells, Cultured | 1997 |