Page last updated: 2024-10-20

uric acid and Alloxan Diabetes

uric acid has been researched along with Alloxan Diabetes in 83 studies

Uric Acid: An oxidation product, via XANTHINE OXIDASE, of oxypurines such as XANTHINE and HYPOXANTHINE. It is the final oxidation product of purine catabolism in humans and primates, whereas in most other mammals URATE OXIDASE further oxidizes it to ALLANTOIN.
uric acid : An oxopurine that is the final oxidation product of purine metabolism.
6-hydroxy-1H-purine-2,8(7H,9H)-dione : A tautomer of uric acid having oxo groups at C-2 and C-8 and a hydroxy group at C-6.
7,9-dihydro-1H-purine-2,6,8(3H)-trione : An oxopurine in which the purine ring is substituted by oxo groups at positions 2, 6, and 8.

Research Excerpts

ExcerptRelevanceReference
" Thus, this study investigated whether the XOR inhibitor, topiroxostat, affected body weight."8.02Influence of xanthine oxidoreductase inhibitor, topiroxostat, on body weight of diabetic obese mice. ( Akari, S; Katoh, N; Mizukami, H; Murase, T; Nakamura, T; Nampei, M; Satoh, E, 2021)
"Uric acid has been proposed as an independent risk factor of diabetic retinopathy."7.88The role of uric acid in the pathogenesis of diabetic retinopathy based on Notch pathway. ( She, XP; Wang, YZ; Zheng, Z; Zhu, DD; Zou, C, 2018)
" Thus, this study investigated whether the XOR inhibitor, topiroxostat, affected body weight."4.02Influence of xanthine oxidoreductase inhibitor, topiroxostat, on body weight of diabetic obese mice. ( Akari, S; Katoh, N; Mizukami, H; Murase, T; Nakamura, T; Nampei, M; Satoh, E, 2021)
"The urate oxidase (Uox) gene encodes uricase that in the rodent liver degrades uric acid into allantoin, forming an obstacle for establishing stable mouse models of hyperuricemia."3.88Knockout of the urate oxidase gene provides a stable mouse model of hyperuricemia associated with metabolic disorders. ( Cheng, X; Cui, L; Hou, X; Jia, Z; Li, C; Li, X; Liu, Z; Lu, J; Ma, L; Mi, QS; Ren, W; Sun, R; Tian, Z; Wang, C; Wang, X; Xin, Y; Yuan, X; Zhang, K, 2018)
"Uric acid has been proposed as an independent risk factor of diabetic retinopathy."3.88The role of uric acid in the pathogenesis of diabetic retinopathy based on Notch pathway. ( She, XP; Wang, YZ; Zheng, Z; Zhu, DD; Zou, C, 2018)
" In STZ-diabetic group, blood glucose, serum sialic and uric acid levels, serum catalase (CAT) and lactate dehydrogenase (LDH) activities, brain lipid peroxidation (LPO) and nonenzymatic glycosylation (NEG) increased, while brain glutathione (GSH) level and body weight decreased."3.73Vanadyl sulfate administration protects the streptozotocin-induced oxidative damage to brain tissue in rats. ( Tunali, S; Yanardag, R, 2006)
" The diabetic dams presented hyperglycemia, hyperlipemia, hypertriglyceridemia, hypercholesterolemia, hyperuricemia, decreased reduced glutathione (GSH), hepatic glycogen and superoxide dismutase (SOD) determinations."3.71Oxidative stress and diabetes in pregnant rats. ( Cunha Rudge, MV; Damasceno, DC; de Mattos Paranhos Calderon, I; Volpato, GT, 2002)
"As pioglitazone is an insulin sens MSDC-itizer used for diabetes, its MPC inhibitory effect in diabetic individuals was investigated."1.91Inactivation of mitochondrial pyruvate carrier promotes NLRP3 inflammasome activation and gout development via metabolic reprogramming. ( Chen, CC; Chen, LC; Chen, YJ; Chien, WC; Chung, CH; Huang, CN; Huang, KY; Liao, NS; Lin, HA; Lin, HC; Lin, YY; Ojcius, DM; Shih, CT; Tsai, KJ; Wang, JY, 2023)
"Collectively, Gln attenuates diabetic nephropathy and other complications in type 2 diabetes mellitus in rats through its antioxidant and anti-inflammatory activities."1.91Exogenous glutamine ameliorates diabetic nephropathy in a rat model of type 2 diabetes mellitus through its antioxidant and anti-inflammatory activities. ( Adibhesami, G; Ahmadvand, H; Babaeenezhad, E; Mahdavifard, S; Nasri, M, 2023)
"Hydralazine is an antihypertensive agent and may act as a xanthine oxidase (XO) inhibitor to reduce uric acid levels in a mouse renal injury model."1.72Antioxidation and Nrf2-mediated heme oxygenase-1 activation contribute to renal protective effects of hydralazine in diabetic nephropathy. ( Chang, TT; Chen, C; Chen, JW; Chiang, CH; Lee, HJ; Lin, SC, 2022)
"Diabetic nephropathy is reported to occur as a result of the interactions between several pathophysiological disturbances, as well as renal oxidative stress and inflammation."1.62Malaysian Propolis and Metformin Synergistically Mitigate Kidney Oxidative Stress and Inflammation in Streptozotocin-Induced Diabetic Rats. ( Abu Bakar, AB; Jalil, NAC; Mohamed, M; Nna, VU; Othman, ZA; Zakaria, Z, 2021)
"Type 2 diabetes was induced by dietary manipulation for 56 days via (high fat- high fructose diet) and intraperitoneal administration of streptozocin (30 mg/kg)."1.51The freeze-dried extracts of Rotheca myricoides (Hochst.) Steane & Mabb possess hypoglycemic, hypolipidemic and hypoinsulinemic on type 2 diabetes rat model. ( Chege, BM; Frederick, B; Nyaga, NM; Waweru, MP, 2019)
"Therefore, Sar can markedly ameliorate diabetic nephropathy in rats via inhibition of NLRP3 inflammasome activation and AGEs-RAGE interaction."1.48Protective effects of sarsasapogenin against early stage of diabetic nephropathy in rats. ( Chen, YJ; Hao, YC; Kong, L; Liu, YW; Wang, TY; Yin, SY; Zhang, MY, 2018)
"Type 2 diabetes was induced in three groups using high-fat diet combined with a single dose of streptozotocin (35mg/kg body weight, intraperitoneally)."1.46Pancreatic and renal function in streptozotocin-induced type 2 diabetic rats administered combined inositol hexakisphosphate and inositol supplement. ( Alexander-Lindo, RL; Dilworth, LL; Foster, SR; Omoruyi, FO; Thompson, R, 2017)
"Heavy metals are known to be toxic to organisms."1.43Nephrotoxic effects of lead nitrate exposure in diabetic and nondiabetic rats: Involvement of oxidative stress and the protective role of sodium selenite. ( Baş, H; Kalender, Y, 2016)
"Experimental diabetes mellitus was produced by a single intraperitoneal injection of STZ (55mg/kg b."1.43Antihyperglycemic and antidiabetic effects of Ethyl (S)-2-(1-cyclohexylsulfamide carbamoyloxy) propanoate in streptozotocin-induced diabetic Wistar rats. ( Berredjem, H; Berredjem, M; Bouzerna, N; Cheloufi, H; Réggami, Y, 2016)
" B06-treated groups were given B06 by gavage at a dosage of 0."1.42[Protective effect of curcumin derivative B06 on kidney of type 2 diabetic rats]. ( Chen, GR; Chen, SM; Cheng, JG; Liu, WW; Liu, X; Wang, L; Zeng, CC, 2015)
"Mangiferin was orally treated with the dose of 40 mg/kg body weight/day for 30 days to diabetic rats."1.40Beneficial effects of mangiferin isolated from Salacia chinensis on biochemical and hematological parameters in rats with streptozotocin-induced diabetes. ( Arulselvan, P; Fakurazi, S; Kandasamy, M; Sellamuthu, PS, 2014)
"Diabetic nephropathy is the kidney disease that occurs as a result of diabetes."1.40Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin-cadmium induced diabetic nephrotoxic rats. ( Ashokkumar, N; Kandasamy, N, 2014)
"Eighteen rats with diabetic nephropathy and 6 rats without induced nephropathy were divided into 4 groups, each containing 6 animals."1.39Effect of silymarin on streptozotocin-nicotinamide-induced type 2 diabetic nephropathy in rats. ( Jose, MA; Kumar, BN; Sathyamurthy, D; Sheela, N, 2013)
" Acute toxicity and dosage fixation studies revealed that the Zn-flavonol complex is non toxic and oral administration of the complex at a concentration of 5mg/kg b."1.38Design, synthesis and characterization of zinc-3 hydroxy flavone, a novel zinc metallo complex for the treatment of experimental diabetes in rats. ( Iyyam Pillai, S; Subramanian, SP; Vijayaraghavan, K, 2012)
"Theophylline was metabolized to 1,3-DMU by CYP1A2 and 2E1 in rats."1.33Pharmacokinetics of theophylline in diabetes mellitus rats: induction of CYP1A2 and CYP2E1 on 1,3-dimethyluric acid formation. ( Kim, SG; Kim, SH; Kim, YC; Lee, AK; Lee, DC; Lee, I; Lee, JH; Lee, MG, 2005)

Research

Studies (83)

TimeframeStudies, this research(%)All Research%
pre-199012 (14.46)18.7374
1990's4 (4.82)18.2507
2000's17 (20.48)29.6817
2010's39 (46.99)24.3611
2020's11 (13.25)2.80

Authors

AuthorsStudies
Chang, TT1
Chiang, CH1
Chen, C1
Lin, SC1
Lee, HJ2
Chen, JW1
Gomes, MA1
Manzano, C1
Alves, TM1
Fiais, GA1
Freitas, RN1
Coutinho Mattera, MSL1
Dornelles, RCM1
Matsushita, DH1
Stevanato Nakamune, ACM1
Chaves-Neto, AH1
Mbiakop, UC1
Gomes, JHS1
Pádua, RM1
Lemos, VS1
Braga, FC1
Cortes, SF1
Chen, LC1
Chen, YJ2
Lin, HA1
Chien, WC1
Tsai, KJ1
Chung, CH1
Wang, JY1
Chen, CC1
Liao, NS1
Shih, CT1
Lin, YY1
Huang, CN1
Ojcius, DM1
Huang, KY1
Lin, HC1
Wang, YL1
Lin, SX1
Wang, Y4
Liang, T1
Jiang, T1
Liu, P1
Li, XY2
Lang, DQ1
Liu, Q4
Shen, CY1
Rehman, HU1
Ullah, K1
Rasool, A1
Manzoor, R1
Yuan, Y1
Tareen, AM1
Kaleem, I1
Riaz, N1
Hameed, S1
Bashir, S1
Nguépy Keubo, FR1
Mboua, PC1
Djifack Tadongfack, T1
Fokouong Tchoffo, E1
Tasson Tatang, C1
Ide Zeuna, J1
Noupoue, EM1
Tsoplifack, CB1
Folefack, GO1
Kettani, M1
Bandelier, P1
Huo, J1
Li, H4
Yu, D1
Arulsamy, N1
AlAbbad, S1
Sardot, T1
Lekashvili, O1
Decato, D1
Lelj, F1
Alexander Ross, JB1
Rosenberg, E1
Nazir, H1
Muthuswamy, N1
Louis, C1
Jose, S1
Prakash, J1
Buan, MEM1
Flox, C1
Chavan, S1
Shi, X1
Kauranen, P1
Kallio, T1
Maia, G1
Tammeveski, K1
Lymperopoulos, N1
Carcadea, E1
Veziroglu, E1
Iranzo, A1
M Kannan, A1
Arunamata, A1
Tacy, TA1
Kache, S1
Mainwaring, RD1
Ma, M1
Maeda, K1
Punn, R1
Noguchi, S1
Hahn, S3
Iwasa, Y3
Ling, J2
Voccio, JP2
Kim, Y3
Song, J3
Bascuñán, J2
Chu, Y1
Tomita, M1
Cazorla, M1
Herrera, E2
Palomeque, E1
Saud, N1
Hoplock, LB1
Lobchuk, MM1
Lemoine, J1
Li, X11
Henson, MA1
Unsihuay, D1
Qiu, J1
Swaroop, S1
Nagornov, KO1
Kozhinov, AN1
Tsybin, YO1
Kuang, S1
Laskin, J1
Zin, NNINM1
Mohamad, MN1
Roslan, K1
Abdul Wafi, S1
Abdul Moin, NI1
Alias, A1
Zakaria, Y1
Abu-Bakar, N1
Naveed, A1
Jilani, K1
Siddique, AB1
Akbar, M1
Riaz, M1
Mushtaq, Z1
Sikandar, M1
Ilyas, S1
Bibi, I1
Asghar, A1
Rasool, G1
Irfan, M1
Zhao, S1
Fan, XH1
Chen, KP1
Hua, W1
Liu, ZM1
Xue, XD1
Zhou, B1
Zhang, S2
Xing, YL1
Chen, MA1
Sun, Y1
Neradilek, MB1
Wu, XT1
Zhang, D2
Huang, W2
Cui, Y1
Yang, QQ1
Li, HW1
Zhao, XQ1
Hossein Rashidi, B1
Tarafdari, A1
Ghazimirsaeed, ST1
Shahrokh Tehraninezhad, E1
Keikha, F1
Eslami, B1
Ghazimirsaeed, SM1
Jafarabadi, M1
Silvani, Y1
Lovita, AND1
Maharani, A1
Wiyasa, IWA1
Sujuti, H1
Ratnawati, R1
Raras, TYM1
Lemin, AS1
Rahman, MM1
Pangarah, CA1
Kiyu, A1
Zeng, C2
Du, H1
Lin, D1
Jalan, D1
Rubagumya, F1
Hopman, WM1
Vanderpuye, V1
Lopes, G2
Seruga, B1
Booth, CM1
Berry, S1
Hammad, N1
Sajo, EA1
Okunade, KS1
Olorunfemi, G1
Rabiu, KA1
Anorlu, RI1
Xu, C2
Xiang, Y1
Xu, X1
Zhou, L2
Dong, X1
Tang, S1
Gao, XC1
Wei, CH1
Zhang, RG1
Cai, Q1
He, Y1
Tong, F1
Dong, JH1
Wu, G1
Dong, XR1
Tang, X1
Tao, F1
Xiang, W1
Zhao, Y2
Jin, L3
Tao, H1
Lei, Y1
Gan, H1
Huang, Y1
Chen, Y4
Chen, L3
Shan, A1
Zhao, H2
Wu, M2
Ma, Q1
Wang, J4
Zhang, E1
Zhang, J3
Li, Y8
Xue, F1
Deng, L1
Liu, L3
Yan, Z3
Meng, J1
Chen, G2
Anastassiadou, M1
Bernasconi, G1
Brancato, A1
Carrasco Cabrera, L1
Greco, L1
Jarrah, S1
Kazocina, A1
Leuschner, R1
Magrans, JO1
Miron, I1
Nave, S1
Pedersen, R1
Reich, H1
Rojas, A1
Sacchi, A1
Santos, M1
Theobald, A1
Vagenende, B1
Verani, A1
Du, L1
Liu, X4
Ren, Y1
Li, J8
Li, P1
Jiao, Q1
Meng, P1
Wang, F2
Wang, YS1
Wang, C4
Zhou, X2
Wang, W3
Wang, S2
Hou, J1
Zhang, A1
Lv, B1
Gao, C1
Pang, D1
Lu, K1
Ahmad, NH1
Wang, L2
Zhu, J2
Zhang, L2
Zhuang, T1
Tu, J1
Zhao, Z1
Qu, Y1
Yao, H1
Wang, X6
Lee, DF1
Shen, J3
Wen, L1
Huang, G2
Xie, X1
Zhao, Q1
Hu, W2
Zhang, Y4
Wu, X1
Lu, J3
Li, M1
Li, W2
Wu, W1
Du, F1
Ji, H1
Yang, X2
Xu, Z1
Wan, L1
Wen, Q1
Cho, CH1
Zou, C2
Xiao, Z1
Liao, J1
Su, X1
Bi, Z1
Su, Q1
Huang, H1
Wei, Y2
Gao, Y2
Na, KJ1
Choi, H1
Oh, HR1
Kim, YH1
Lee, SB1
Jung, YJ1
Koh, J1
Park, S1
Jeon, YK1
Chung, DH1
Paeng, JC1
Park, IK1
Kang, CH1
Cheon, GJ1
Kang, KW1
Lee, DS1
Kim, YT1
Pajuelo-Lozano, N1
Alcalá, S1
Sainz, B1
Perona, R1
Sanchez-Perez, I1
Logotheti, S1
Marquardt, S1
Gupta, SK1
Richter, C1
Edelhäuser, BAH1
Engelmann, D1
Brenmoehl, J1
Söhnchen, C1
Murr, N1
Alpers, M1
Singh, KP1
Wolkenhauer, O1
Heckl, D1
Spitschak, A1
Pützer, BM1
Liao, Y1
Cheng, J1
Kong, X1
Li, S1
Zhang, M4
Zhang, H1
Yang, T2
Dong, Y1
Xu, Y1
Yuan, Z1
Cao, J1
Zheng, Y2
Luo, Z1
Mei, Z1
Yao, Y1
Liu, Z4
Liang, C1
Yang, H1
Song, Y1
Yu, K1
Zhu, C1
Huang, Z1
Qian, J1
Ge, J1
Hu, J2
Wang, H3
Liu, Y5
Mi, Y1
Kong, H1
Xi, D1
Yan, W1
Luo, X1
Ning, Q1
Chang, X2
Zhang, T2
Wang, Q2
Rathore, MG1
Reddy, K1
Chen, H1
Shin, SH1
Ma, WY1
Bode, AM1
Dong, Z1
Mu, W1
Liu, C3
Gao, F1
Qi, Y1
Lu, H1
Zhang, X4
Cai, X1
Ji, RY1
Hou, Y3
Tian, J2
Shi, Y3
Ying, S1
Tan, M1
Feng, G1
Kuang, Y1
Chen, D1
Wu, D3
Zhu, ZQ1
Tang, HX1
Shi, ZE1
Kang, J1
Qi, J2
Mu, J1
Cong, Z1
Chen, S2
Fu, D1
Li, Z3
Celestrin, CP1
Rocha, GZ1
Stein, AM1
Guadagnini, D1
Tadelle, RM1
Saad, MJA1
Oliveira, AG1
Bianconi, V1
Bronzo, P1
Banach, M1
Sahebkar, A1
Mannarino, MR1
Pirro, M1
Patsourakos, NG1
Kouvari, M1
Kotidis, A1
Kalantzi, KI1
Tsoumani, ME1
Anastasiadis, F1
Andronikos, P1
Aslanidou, T1
Efraimidis, P1
Georgiopoulos, A1
Gerakiou, K1
Grigoriadou-Skouta, E1
Grigoropoulos, P1
Hatzopoulos, D1
Kartalis, A1
Lyras, A1
Markatos, G1
Mikrogeorgiou, A1
Myroforou, I1
Orkopoulos, A1
Pavlidis, P1
Petras, C1
Riga, M1
Skouloudi, M1
Smyrnioudis, N1
Thomaidis, K1
Tsikouri, GE1
Tsikouris, EI1
Zisimos, K1
Vavoulis, P1
Vitali, MG1
Vitsas, G1
Vogiatzidis, C1
Chantanis, S1
Fousas, S1
Panagiotakos, DB1
Tselepis, AD1
Jungen, C1
Alken, FA1
Eickholt, C1
Scherschel, K1
Kuklik, P1
Klatt, N1
Schwarzl, J1
Moser, J1
Jularic, M1
Akbulak, RO1
Schaeffer, B1
Willems, S1
Meyer, C1
Nowak, JK1
Szczepanik, M1
Trypuć, M1
Pogorzelski, A1
Bobkowski, W1
Grytczuk, M1
Minarowska, A1
Wójciak, R1
Walkowiak, J1
Lu, Y1
Xi, J1
Li, C2
Chen, W2
Hu, X1
Zhang, F1
Wei, H1
Wang, Z1
Gurzu, S1
Jung, I1
Sugimura, H2
Stefan-van Staden, RI1
Yamada, H1
Natsume, H1
Iwashita, Y1
Szodorai, R1
Szederjesi, J1
Yari, D1
Ehsanbakhsh, Z1
Validad, MH1
Langroudi, FH1
Esfandiari, H1
Prager, A1
Hassanpour, K1
Kurup, SP1
Mets-Halgrimson, R1
Yoon, H1
Zeid, JL1
Mets, MB1
Rahmani, B1
Araujo-Castillo, RV1
Culquichicón, C1
Solis Condor, R1
Efendi, F1
Sebayang, SK1
Astutik, E1
Hadisuyatmana, S1
Has, EMM1
Kuswanto, H1
Foroutan, T1
Ahmadi, F1
Moayer, F1
Khalvati, S1
Zhang, Q2
Lyu, Y1
Huang, J1
Yu, N1
Wen, Z1
Hou, H1
Zhao, T1
Gupta, A1
Khosla, N1
Govindasamy, V1
Saini, A1
Annapurna, K1
Dhakate, SR1
Akkaya, Ö1
Chandgude, AL1
Dömling, A1
Harnett, J1
Oakes, K1
Carè, J1
Leach, M1
Brown, D1
Cramer, H1
Pinder, TA1
Steel, A1
Anheyer, D1
Cantu, J1
Valle, J1
Flores, K1
Gonzalez, D1
Valdes, C1
Lopez, J1
Padilla, V1
Alcoutlabi, M1
Parsons, J1
Núñez, K1
Hamed, M1
Fort, D1
Bruce, D1
Thevenot, P1
Cohen, A1
Weber, P1
Menezes, AMB1
Gonçalves, H1
Perez-Padilla, R1
Jarvis, D1
de Oliveira, PD1
Wehrmeister, FC1
Mir, S1
Wong, J1
Ryan, CM1
Bellingham, G1
Singh, M2
Waseem, R1
Eckert, DJ1
Chung, F1
Hegde, H1
Shimpi, N1
Panny, A1
Glurich, I1
Christie, P1
Acharya, A1
English, KL1
Downs, M1
Goetchius, E1
Buxton, R1
Ryder, JW1
Ploutz-Snyder, R1
Guilliams, M1
Scott, JM1
Ploutz-Snyder, LL1
Martens, C1
Goplen, FK1
Aasen, T1
Gjestad, R1
Nordfalk, KF1
Nordahl, SHG1
Inoue, T1
Soshi, S1
Kubota, M1
Marumo, K1
Mortensen, NP1
Caffaro, MM1
Patel, PR2
Uddin, MJ1
Aravamudhan, S1
Sumner, SJ1
Fennell, TR1
Gal, RL1
Cohen, NJ1
Kruger, D1
Beck, RW1
Bergenstal, RM1
Calhoun, P1
Cushman, T1
Haban, A1
Hood, K1
Johnson, ML1
McArthur, T1
Olson, BA1
Weinstock, RS1
Oser, SM1
Oser, TK1
Bugielski, B1
Strayer, H1
Aleppo, G1
Maruyama, H1
Hirayama, K1
Yamashita, M1
Ohgi, K1
Tsujimoto, R1
Takayasu, M1
Shimohata, H1
Kobayashi, M1
Buscagan, TM1
Rees, DC1
Jaborek, JR1
Zerby, HN1
Wick, MP1
Fluharty, FL1
Moeller, SJ1
Razavi, P1
Dickler, MN1
Shah, PD1
Toy, W1
Brown, DN1
Won, HH1
Li, BT1
Shen, R1
Vasan, N1
Modi, S1
Jhaveri, K1
Caravella, BA1
Patil, S1
Selenica, P1
Zamora, S1
Cowan, AM1
Comen, E1
Singh, A1
Covey, A1
Berger, MF1
Hudis, CA1
Norton, L1
Nagy, RJ1
Odegaard, JI1
Lanman, RB1
Solit, DB1
Robson, ME1
Lacouture, ME1
Brogi, E1
Reis-Filho, JS1
Moynahan, ME1
Scaltriti, M1
Chandarlapaty, S1
Papouskova, K1
Moravcova, M1
Masrati, G1
Ben-Tal, N1
Sychrova, H1
Zimmermannova, O1
Fang, J2
Fan, Y1
Luo, T2
Su, H1
Tsetseris, L1
Anthopoulos, TD1
Liu, SF1
Zhao, K1
Sacan, O1
Turkyilmaz, IB1
Bayrak, BB1
Mutlu, O1
Akev, N1
Yanardag, R3
Gruber, S1
Kamnoedboon, P1
Özcan, M1
Srinivasan, M1
Jo, YH1
Oh, HK1
Jeong, SY1
Lee, BG1
Zheng, J1
Guan, H1
Li, D2
Tan, H1
Maji, TK1
J R, A1
Mukherjee, S1
Alexander, R1
Mondal, A1
Das, S1
Sharma, RK1
Chakraborty, NK1
Dasgupta, K1
Sharma, AMR1
Hawaldar, R1
Pandey, M1
Naik, A1
Majumdar, K1
Pal, SK1
Adarsh, KV1
Ray, SK1
Karmakar, D1
Ma, Y3
Gao, W1
Ma, S1
Lin, W1
Zhou, T1
Wu, T1
Wu, Q1
Ye, C1
He, X1
Jiang, F1
Yuan, D1
Chen, Q1
Hong, M1
Chen, K1
Hussain, M1
Razi, SS1
Yildiz, EA1
Zhao, J1
Yaglioglu, HG1
Donato, MD1
Jiang, J1
Jamil, MI1
Zhan, X1
Chen, F1
Cheng, D1
Wu, CT1
Utsunomiya, T1
Ichii, T1
Fujinami, S1
Nakajima, K1
Sanchez, DM1
Raucci, U1
Ferreras, KN1
Martínez, TJ1
Mordi, NA1
Mordi, IR1
Singh, JS1
McCrimmon, RJ1
Struthers, AD1
Lang, CC1
Wang, XW1
Yuan, LJ1
Yang, Y1
Chen, WF1
Luo, R1
Yang, K1
Amarasiri, SS1
Attanayake, AP1
Arawwawala, LDAM1
Jayatilaka, KAPW1
Mudduwa, LKB1
Ogunsuyi, O2
Akanni, O1
Alabi, O1
Alimba, C1
Adaramoye, O1
Cambier, S1
Eswara, S1
Gutleb, AC1
Bakare, A1
Gu, Z1
Cong, J1
Pellegrini, M1
Palmieri, S1
Ricci, A1
Serio, A1
Paparella, A1
Lo Sterzo, C1
Jadeja, SD1
Vaishnav, J1
Mansuri, MS1
Shah, C1
Mayatra, JM1
Shah, A1
Begum, R1
Song, H2
Lian, Y1
Wan, T1
Schultz-Lebahn, A1
Skipper, MT1
Hvas, AM1
Larsen, OH1
Hijazi, Z1
Granger, CB1
Hohnloser, SH1
Westerbergh, J1
Lindbäck, J1
Alexander, JH1
Keltai, M1
Parkhomenko, A1
López-Sendón, JL1
Lopes, RD1
Siegbahn, A1
Wallentin, L1
El-Tarabany, MS1
Saleh, AA1
El-Araby, IE1
El-Magd, MA1
van Ginkel, MPH1
Schijven, MP1
van Grevenstein, WMU1
Schreuder, HWR1
Pereira, EDM1
da Silva, J1
Carvalho, PDS1
Grivicich, I1
Picada, JN1
Salgado Júnior, IB1
Vasques, GJ1
Pereira, MADS1
Reginatto, FH1
Ferraz, ABF1
Vasilenko, EA1
Gorshkova, EN1
Astrakhantseva, IV1
Drutskaya, MS1
Tillib, SV1
Nedospasov, SA1
Mokhonov, VV1
Nam, YW1
Cui, M1
Orfali, R1
Viegas, A1
Nguyen, M1
Mohammed, EHM1
Zoghebi, KA1
Rahighi, S1
Parang, K1
Patterson, KC1
Kahanovitch, U1
Gonçalves, CM1
Hablitz, JJ1
Staruschenko, A1
Mulkey, DK1
Olsen, ML1
Gu, L1
Cao, X1
Mukhtar, A1
Wu, K1
Zhang, YY1
Zhu, Y1
Lu, DZ1
Dong, W1
Bi, WJ1
Feng, XJ1
Wen, LM1
Sun, H1
Qi, MC1
Chang, CC1
Dinh, TK1
Lee, YA1
Wang, FN1
Sung, YC1
Yu, PL1
Chiu, SC1
Shih, YC1
Wu, CY1
Huang, YD1
Lu, TT1
Wan, D1
Sakizadeh, J1
Cline, JP1
Snyder, MA1
Kiely, CJ1
McIntosh, S1
Jiang, X1
Cao, JW1
Zhao, CK1
Yang, R1
Zhang, QY1
Chen, KJ2
Liu, H3
He, Z1
Chen, B1
Wu, J2
Du, X1
Moore, J1
Blank, BR1
Eksterowicz, J1
Sutimantanapi, D1
Yuen, N1
Metzger, T1
Chan, B1
Huang, T1
Chen, X1
Duong, F1
Kong, W1
Chang, JH1
Sun, J1
Zavorotinskaya, T1
Ye, Q1
Junttila, MR1
Ndubaku, C1
Friedman, LS1
Fantin, VR1
Sun, D1
Fei, P1
Xie, Q1
Jiang, Y1
Feng, H1
Chang, Y1
Kang, H1
Xing, M1
Chen, J1
Shao, Z1
Yuan, C1
Wu, Y2
Allan, R1
Canham, K1
Wallace, R1
Singh, D1
Ward, J1
Cooper, A1
Newcomb, C1
Nammour, S1
El Mobadder, M1
Maalouf, E1
Namour, M1
Namour, A1
Rey, G1
Matamba, P1
Matys, J1
Zeinoun, T1
Grzech-Leśniak, K1
Segabinazi Peserico, C1
Garozi, L1
Zagatto, AM1
Machado, FA1
Hirth, JM1
Dinehart, EE1
Lin, YL1
Kuo, YF1
Nouri, SS1
Ritchie, C1
Volow, A1
Li, B2
McSpadden, S1
Dearman, K1
Kotwal, A1
Sudore, RL1
Ward, L1
Thakur, A1
Kondadasula, SV1
Ji, K1
Schalk, DL1
Bliemeister, E1
Ung, J1
Aboukameel, A1
Casarez, E1
Sloane, BF1
Lum, LG1
Xiao, M1
Feng, X1
Gao, R1
Du, B1
Brooks, T1
Zwirner, J1
Hammer, N1
Ondruschka, B1
Jermy, M1
Luengo, A1
Marzo, I1
Reback, M1
Daubit, IM1
Fernández-Moreira, V1
Metzler-Nolte, N1
Gimeno, MC1
Tonchev, I1
Heberman, D1
Peretz, A1
Medvedovsky, AT1
Gotsman, I1
Rashi, Y1
Poles, L1
Goland, S1
Perlman, GY1
Danenberg, HD1
Beeri, R1
Shuvy, M1
Fu, Q1
Yang, D1
Sarapulova, A1
Pang, Q1
Meng, Y1
Wei, L1
Ehrenberg, H1
Kim, CC1
Jeong, SH1
Oh, KH1
Nam, KT1
Sun, JY1
Ning, J1
Duan, Z1
Kershaw, SV1
Rogach, AL1
Gao, Z1
Wang, T1
Li, Q1
Cao, T1
Guo, L1
Fu, Y1
Seeger, ZL1
Izgorodina, EI1
Hue, S1
Beldi-Ferchiou, A1
Bendib, I1
Surenaud, M1
Fourati, S1
Frapard, T1
Rivoal, S1
Razazi, K1
Carteaux, G1
Delfau-Larue, MH1
Mekontso-Dessap, A1
Audureau, E1
de Prost, N1
Gao, SS1
Duangthip, D1
Lo, ECM1
Chu, CH1
Roberts, W1
Rosenheck, RA1
Miyake, T1
Kimoto, E1
Luo, L1
Mathialagan, S1
Horlbogen, LM1
Ramanathan, R1
Wood, LS1
Johnson, JG1
Le, VH1
Vourvahis, M1
Rodrigues, AD1
Muto, C1
Furihata, K1
Sugiyama, Y1
Kusuhara, H1
Gong, Q1
Song, W1
Sun, B1
Cao, P1
Gu, S1
Sun, X2
Zhou, G1
Toma, C1
Khandhar, S1
Zalewski, AM1
D'Auria, SJ1
Tu, TM1
Jaber, WA1
Cho, J2
Suwandaratne, NS1
Razek, S1
Choi, YH1
Piper, LFJ1
Watson, DF1
Banerjee, S1
Xie, S1
Lindsay, AP1
Bates, FS1
Lodge, TP1
Hao, Y1
Chapovetsky, A1
Liu, JJ1
Welborn, M1
Luna, JM1
Do, T1
Haiges, R1
Miller Iii, TF1
Marinescu, SC1
Lopez, SA1
Compter, I1
Eekers, DBP1
Hoeben, A1
Rouschop, KMA1
Reymen, B1
Ackermans, L1
Beckervordersantforth, J1
Bauer, NJC1
Anten, MM1
Wesseling, P1
Postma, AA1
De Ruysscher, D1
Lambin, P1
Qiang, L1
Yang, S1
Cui, YH1
He, YY1
Kumar, SK1
Jacobus, SJ1
Cohen, AD1
Weiss, M1
Callander, N1
Singh, AK1
Parker, TL1
Menter, A1
Parsons, B1
Kumar, P1
Kapoor, P1
Rosenberg, A1
Zonder, JA1
Faber, E1
Lonial, S1
Anderson, KC1
Richardson, PG1
Orlowski, RZ1
Wagner, LI1
Rajkumar, SV1
Li, G1
Hou, G1
Cui, J1
Xie, H1
Sun, Z1
Fang, Z1
Dunstand-Guzmán, E1
Hallal-Calleros, C1
Hernández-Velázquez, VM1
Canales-Vargas, EJ1
Domínguez-Roldan, R1
Pedernera, M1
Peña-Chora, G1
Flores-Pérez, I1
Kim, MJ1
Han, C1
White, K1
Park, HJ1
Ding, D1
Boyd, K1
Rothenberger, C1
Bose, U1
Carmichael, P1
Linser, PJ1
Tanokura, M1
Salvi, R1
Someya, S1
Samuni, A1
Goldstein, S1
Divya, KP1
Dharuman, V1
Feng, J2
Qian, Y1
Cheng, Q1
Ma, H1
Ren, X1
Wei, Q1
Pan, W1
Guo, J1
Situ, B1
An, T1
Zheng, L1
Augusto, S1
Ratola, N1
Tarín-Carrasco, P1
Jiménez-Guerrero, P1
Turco, M1
Schuhmacher, M1
Costa, S1
Teixeira, JP1
Costa, C1
Syed, A1
Marraiki, N1
Al-Rashed, S1
Elgorban, AM1
Yassin, MT1
Chankhanittha, T1
Nanan, S1
Sorokina, KN1
Samoylova, YV1
Gromov, NV1
Ogorodnikova, OL1
Parmon, VN1
Ye, J1
Liao, W1
Zhang, P1
Nabi, M1
Cai, Y1
Li, F1
Alsbou, EM1
Omari, KW1
Adeosun, WA1
Asiri, AM1
Marwani, HM1
Barral, M1
Jemal-Turki, A1
Beuvon, F1
Soyer, P1
Camparo, P1
Cornud, F1
Atwater, BD1
Jones, WS1
Loring, Z1
Friedman, DJ1
Namburath, M1
Papirio, S1
Moscariello, C1
Di Costanzo, N1
Pirozzi, F1
Alappat, BJ1
Sreekrishnan, TR1
Volpin, F1
Woo, YC1
Kim, H2
Freguia, S1
Jeong, N1
Choi, JS1
Phuntsho, S1
Shon, HK1
Domínguez-Zambrano, E1
Pedraza-Chaverri, J2
López-Santos, AL1
Medina-Campos, ON2
Cruz-Rivera, C1
Bueno-Hernández, F1
Espinosa-Cuevas, A1
Bulavaitė, A1
Dalgediene, I1
Michailoviene, V1
Pleckaityte, M1
Sauerbier, P1
Köhler, R1
Renner, G1
Militz, H1
Itano, S1
Kadoya, H1
Satoh, M1
Nakamura, T2
Murase, T2
Sasaki, T1
Kanwar, YS1
Kashihara, N1
Nasri, M1
Adibhesami, G1
Mahdavifard, S1
Babaeenezhad, E1
Ahmadvand, H1
Nampei, M1
Satoh, E1
Akari, S1
Katoh, N1
Mizukami, H1
Nna, VU1
Abu Bakar, AB1
Zakaria, Z1
Othman, ZA1
Jalil, NAC1
Mohamed, M1
Toyoki, D1
Shibata, S1
Kuribayashi-Okuma, E1
Xu, N1
Ishizawa, K1
Hosoyamada, M1
Uchida, S1
Hou, X2
Yuan, X1
Cui, L1
Ma, L1
Cheng, X1
Xin, Y1
Zhang, K1
Ren, W1
Sun, R1
Jia, Z1
Tian, Z1
Mi, QS1
Foster, SR1
Dilworth, LL1
Omoruyi, FO1
Thompson, R1
Alexander-Lindo, RL1
Cao, H1
Wei, X1
Cheng, P1
Jiao, R1
Xing, Y1
Tang, J1
Li, T1
Han, H1
Lee, JS1
Shin, S1
Lee, J1
Kim, J1
Cho, SW1
Seo, J1
Lee, T1
Liu, YW1
Hao, YC1
Yin, SY1
Zhang, MY1
Kong, L1
Wang, TY1
Mudassir, HA1
Qureshi, SA1
Azmi, MB1
Ahsan, M1
Ma, J2
Hu, MT1
Dong, XD1
Xiang, LT1
Gu, QR1
Du, ZY1
Chen, SM2
Chen, GR2
Zhu, DD1
Wang, YZ1
She, XP1
Zheng, Z1
Guo, XX1
Wang, K1
Ji, BP1
Zhou, F1
Lai, X1
Tong, D1
Ai, X1
Luo, Y1
Zuo, F1
Wei, Z1
Jiang, Q1
Meng, X1
Zeng, Y1
Wang, P1
Thounaojam, MC1
Montemari, A1
Powell, FL1
Malla, P1
Gutsaeva, DR1
Bachettoni, A1
Ripandelli, G1
Repossi, A1
Tawfik, A1
Martin, PM1
Facchiano, F1
Bartoli, M1
Chege, BM1
Waweru, MP1
Frederick, B1
Nyaga, NM1
Sheela, N1
Jose, MA1
Sathyamurthy, D1
Kumar, BN1
Guan, M1
Xie, L1
Diao, C1
Wang, N1
Gao, H1
Sellamuthu, PS1
Arulselvan, P2
Fakurazi, S1
Kandasamy, M1
Cicerchi, C1
Li, N1
Kratzer, J1
Garcia, G1
Roncal-Jimenez, CA1
Tanabe, K1
Hunter, B1
Rivard, CJ1
Sautin, YY1
Gaucher, EA1
Johnson, RJ1
Lanaspa, MA1
Ran, J1
Tan, R1
Lao, G1
Kandasamy, N1
Ashokkumar, N1
El-Megharbel, SM1
Hamza, RZ1
Refat, MS2
Balakumar, P1
Varatharajan, R1
Nyo, YH1
Renushia, R1
Raaginey, D1
Oh, AN1
Akhtar, SS1
Rupeshkumar, M1
Sundram, K1
Dhanaraj, SA1
Malardé, L1
Groussard, C1
Lefeuvre-Orfila, L1
Vincent, S1
Efstathiou, T1
Gratas-Delamarche, A1
Juárez-Reyes, K1
Brindis, F1
Bye, R1
Linares, E1
Mata, R1
Baş, H1
Kalender, Y1
Zeng, CC1
Liu, WW1
Cheng, JG1
Réggami, Y1
Berredjem, H1
Cheloufi, H1
Berredjem, M1
Bouzerna, N1
Selim, ME1
Hendi, AA1
Alfallaj, E1
Han, JW1
Shim, DW1
Shin, WY1
Kim, MK1
Shim, EJ1
Koppula, S1
Kim, TJ1
Kang, TB1
Lee, KH1
Pourfarjam, Y1
Rezagholizadeh, L1
Nowrouzi, A1
Meysamie, A1
Ghaseminejad, S1
Ziamajidi, N1
Norouzi, D1
Rupérez, FJ1
García-Martínez, D1
Baena, B1
Maeso, N1
Cifuentes, A1
Barbas, C1
Teixeira de Lemos, E1
Reis, F1
Baptista, S1
Pinto, R1
Sepodes, B1
Vala, H1
Rocha-Pereira, P1
Correia da Silva, G1
Teixeira, N1
Silva, AS1
Carvalho, L1
Teixeira, F1
Das, UN1
Medvedeva, NB1
Telushkin, PL1
Stel'makh, AY1
Mallick, C1
De, D1
Ghosh, D1
Liu, S1
Wang, XM1
Duan, H1
Rotimi, SO1
Olayiwola, I1
Ademuyiwa, O1
Adamson, I1
BAILEY, CC1
BAILEY, OT1
LEECH, RS1
Latha, RC1
Daisy, P2
Vijayaraghavan, K1
Iyyam Pillai, S1
Subramanian, SP1
Jaiswal, N1
Bhatia, V1
Srivastava, SP1
Srivastava, AK1
Tamrakar, AK1
Haeri, MR1
Limaki, HK1
White, CJ1
White, KN1
Saipriya, K1
Zharkova, NV1
Potapov, PP1
Stelmach, AY1
Cheng, R1
Lee, K1
Hu, Y1
Yi, J1
Ma, JX1
El-Shenawy, NS1
Fakihi, FH1
Damasceno, DC1
Volpato, GT1
de Mattos Paranhos Calderon, I1
Cunha Rudge, MV1
El-Remessy, AB1
Behzadian, MA1
Abou-Mohamed, G1
Franklin, T1
Caldwell, RW1
Caldwell, RB1
Matsumoto, S1
Koshiishi, I1
Inoguchi, T1
Nawata, H1
Utsumi, H1
Korytár, P1
Sivonová, M1
Maruniaková, A1
Ulicná, O1
Kvasnicka, P1
Liptáková, A1
Bozek, P1
Cársky, J1
Duracková, Z1
LOUBATIERES, A1
BOUYARD, P1
DE LACLOS, F1
Garg, MC1
Chaudhary, DP1
Bansal, DD1
Kim, YC1
Lee, AK1
Lee, JH1
Lee, I1
Lee, DC1
Kim, SH1
Kim, SG1
Lee, MG1
Ozsoy-Sacan, O1
Orak, H1
Ozgey, Y1
Tunali, S1
Galusha, SA1
Rock, KL1
Senthilkumar, GP1
Sathish Kumar, D1
Subramanian, S1
Eidi, A1
Eidi, M1
Esmaeili, E1
CONN, JW1
LOUIS, LH1
JOHNSTON, MW1
Dominis, M1
Rocic, S1
Ashcroft, SJ2
Rocic, B4
Poje, M4
Sikirica, M1
Vicković, I1
Bruvo, M1
Asayama, K1
Nakane, T1
Uchida, N1
Hayashibe, H1
Dobashi, K1
Nakazawa, S1
Mitra, SK1
Gopumadhavan, S1
Muralidhar, TS1
Anturlikar, SD1
Sujatha, MB1
Kristal, BS1
Vigneau-Callahan, KE1
Moskowitz, AJ1
Matson, WR1
Akimoto, LS1
Pedrinho, SR1
Bazotte, RB1
Kawada, J1
Harrison, DE1
Rahman, MA2
Schmidt, R2
Methfessel, J2
Schultka, R1
Apel, D1
Alam, MJ1
Whitehouse, FW1
Cleary, WJ1
Keil, S1

Clinical Trials (1)

Trial Overview

TrialPhaseEnrollmentStudy TypeStart DateStatus
Phase 2/3 Study of Effect of AT1RB Versus ACE Inhibitor in Addition to XO Inhibitor on Progression of LV Remodeling and Dysfunction in Diabetic Patients With Acute MI.[NCT01052272]Phase 2/Phase 372 participants (Actual)Interventional2005-07-31Completed
[information is prepared from clinicaltrials.gov, extracted Sep-2024]

Trial Outcomes

Left Ventricular Ejection Fraction (LVEF)

LVEF is a calculation of heart pump function determined from the volume after complete filling minus the volume after complete contraction divided by the volume after complete filling. A value of 55% or greater is normal. This is a measure of LV Systolic Function. Since some visits did not occur at the scheduled 6 month intervals, the results have been divided into 3-month visit intervals for reporting purposes (NCT01052272)
Timeframe: 5 visits per Participant over 2 years (about every 6 months)

,,,
Interventionpercent (Mean)
Month 0 (n=17,17,18,18)Month 6(n=14,11,11,12)Month 9(n=1,2,0,0)Month 12(n=12,11,11,11)Month 15(n=3,2,1,1)Month 18(n=10,12,8,8)Month 21(n=3,0,0,1)Month 24 (n=11,9,8,10)Month 27 (n=1,1,0,1)
Candesartan Cilexetil56.3656.8242.6252.3739.8856.33NA51.7054.17
Candesartan Cilexetil and Allopurinol52.6857.28NA56.1154.4657.8256.1755.7954.40
Ramipril52.1954.2064.9852.7652.1355.0251.2757.1850.73
Ramipril and Allopurinol53.3752.80NA51.7434.8954.05NA55.59NA

Left Ventricular End Diastolic Volume Indexed to Body Surface Area (LVEDV/BSA)

LVEDV/BSA: As an indicator of heart size, the blood volume of the heart is related to the body size. The relation of heart blood volume to body size is more accurate in determining pathology because larger people require a larger heart blood volume. The values that are too high or too low indicate a diseased myocardium. This is a measure of LV Diastolic Function. Since some visits did not occur at the scheduled 6 month intervals, the results have been divided into 3-month visit intervals. (NCT01052272)
Timeframe: 5 visits per Participant over 2 years (about every 6 months)

,,,
Interventionml/m^2 (Mean)
Month 0 (n=17,17,18,18)Month 6(n=14,11,11,12)Month 9(n=1,2,0,0)Month12(n=12,11,11,11)Month 15(n=3,2,1,1)Month 18(n=10,12,8,8)Month 21(n=3,0,0,1)Month 24 (n=11,9,8,10)Month 27 (n=1,1,0,1)
Candesartan Cilexetil78.0678.6093.5785.4490.2082.74NA84.2876.65
Candesartan Cilexetil and Allopurinol79.0378.01NA79.7563.184.9575.2779.7275.05
Ramipril73.0374.1073.2375.3481.1975.2871.9970.4648.68
Ramipril and Allopurinol78.5286.13NA83.95108.2567.96NA71.63NA

Left Ventricular End Systolic Volume Indexed to Body Surface Area (LVESV/BSA)

LVESV/BSA: The end systolic volume is the blood volume of the heart at the end of contraction and is an index of the pump function of the heart. This relation to body size is more accurate in determining pathology because larger people require a larger heart blood volume. The values that are too high or too low indicate a diseased myocardium. This is a measure of LV Systolic Function. Since some visits did not occur at the scheduled 6 month intervals, the results have been divided into 3-month visit intervals. (NCT01052272)
Timeframe: 5 visits per Participant over 2 years (about every 6 months)

,,,
Interventionml/m^2 (Mean)
Month 0 (n=17,17,18,18)Month 6(n=14,11,11,12)Month 9(n=1,2,0,0)Month 12(n=12,11,11,11)Month 15(n=3,2,1,1)Month 18(n=10,12,8,8)Month 21(n=3,0,0,1)Month 24 (n=11,9,8,10)Month 27 (n=1,1,0,1)
Candesartan Cilexetil35.2635.2653.8742.2754.0437.76NA41.7235.13
Candesartan Cilexetil and Allopurinol39.4934.15NA36.0728.7437.1832.9935.9934.22
Ramipril36.2034.7725.6436.8239.4235.3035.2331.1723.98
Ramipril and Allopurinol37.9142.88NA42.3470.4830.39NA31.56NA

Left Ventricular End-diastolic Mass Indexed to Left Ventricular End-diastolic Volume (LVED Mass/LVEDV)

LVED Mass/LVEDV: As an indicator of heart muscle mass and heart blood volume, the mass indexed to end diastolic volume determines whether there is an adequate amount of heart muscle to pump the heart blood volume obtained from a three-dimensional analysis. The values that are too high or too low indicate a diseased myocardium. This is a measure of LV Geometry. Since some visits did not occur at the scheduled 6 month intervals, the results have been divided into 3-month visit intervals for reporting purposes. (NCT01052272)
Timeframe: 5 visits per Participant over 2 years (about every 6 months)

,,,
Interventiong/ml (Mean)
Month 0 (n=17,17,18,18)Month 6(n=14,11,11,12)Month 9(n=1,2,0,0)Month 12(n=12,11,11,11)Month 15(n=3,2,1,1)Month 18(n=10,12,8,8)Month 21(n=3,0,0,1)Month 24 (n=11,9,8,10)Month 27 (n=1,1,0,1)
Candesartan Cilexetil0.950.830.670.780.700.79NA0.800.64
Candesartan Cilexetil and Allopurinol0.870.82NA0.860.680.800.690.820.69
Ramipril0.920.870.750.840.810.790.950.840.93
Ramipril and Allopurinol0.860.71NA0.720.570.83NA0.80NA

Left Ventricular End-Diastolic Radius to Wall Thickness (LVED Radius/Wall Thickness)

LVED Radius/Wall thickness As an indicator of heart muscle mass and heart volume chamber diameter, the end-diastolic radius indexed to end diastolic wall thickness determines whether there is an adequate amount of heart muscle to pump the heart blood volume obtained from a two-dimensional analysis. The values that are too high or too low indicate a diseased myocardium. This is a measure of LV Geometry. Since some visits did not occur at the scheduled 6 month intervals, the results have been divided into 3-month visit intervals for reporting purposes. (NCT01052272)
Timeframe: 5 visits per Participant over 2 years (about every 6 months)

,,,
Interventionunitless (Mean)
Month 0 (n=17,17,18,18)Month 6(n=14,11,11,12)Month 9(n=1,2,0,0)Month 12(n=12,11,11,11)Month 15(n=3,2,1,1)Month 18(n=10,12,8,8)Month 21(n=3,0,0,1)Month 24 (n=11,9,8,10)Month 27 (n=1,1,0,1)
Candesartan Cilexetil3.143.394.143.684.103.71NA3.584.04
Candesartan Cilexetil and Allopurinol3.453.63NA3.423.903.564.243.564.29
Ramipril3.233.323.423.433.443.602.923.463.12
Ramipril and Allopurinol3.574.04NA4.014.573.60NA3.61NA

LV End Systolic Maximum Shortening (LVES Max Shortening)

By identifying three points in three different planes in the heart muscle, the maximum shortening is the average of the difference between the distance between these three points at the end of filling of the heart and the end of contraction divided by the length at the end of filling times 100. The maximum shortening is a three dimensional analysis. The higher values indicate a healthy heart. This is a measure of LV Systolic Function. Since some visits did not occur at the scheduled 6 month intervals, the results have been divided into 3-month visit intervals for reporting purposes. (NCT01052272)
Timeframe: 5 visits per Participant over 2 years (about every 6 months)

,,,
Interventionpercent of length at end of filling (Mean)
Month 0 (n=17,17,17,18)Month 6(n=14,11,10,12)Month 9(n=1,2,0,0)Month 12(n=11,11,10,10)Month 15(n=3,2,1,1)Month 18(n=10,12,7,8)Month 21(n=3,0,0,1)Month 24 (n=11,9,8,10)Month 27 (n=1,1,0,1)
Candesartan Cilexetil16.6817.5019.0817.1316.2817.55NA16.6220.38
Candesartan Cilexetil and Allopurinol16.0018.50NA18.5116.3617.5217.8917.8516.59
Ramipril15.8116.8818.4314.5717.0617.2616.6815.6713.70
Ramipril and Allopurinol15.8418.72NA17.9614.2217.46NA17.52NA

Peak Early Filling Rate Normalized to EDV

The Peak Early Filling Rate Normalized to EDV is calculated from the slope of the volume during the early filling of the heart with respect to time. The higher values indicate a very healthy heart muscle and lower values are indicative of a very stiff muscle. This is a measure of LV Diastolic Function. Since some visits did not occur at the scheduled 6 month intervals, the results have been divided into 3-month visit intervals for reporting purposes. (NCT01052272)
Timeframe: 5 visits per Participant over 2 years (about every 6 months)

,,,
Intervention1/sec (Mean)
Month 0 (n=17,17,18,18)Month 6(n=14,11,11,12)Month 9(n=1,2,0,0)Month 12(n=12,11,11,11)Month 15(n=3,2,1,1)Month 18(n=10,12,8,8)Month 21(n=3,0,0,1)Month 24 (n=11,9,8,10)Month 27 (n=1,1,0,1)
Candesartan Cilexetil2.012.021.131.901.481.93NA1.651.10
Candesartan Cilexetil and Allopurinol2.01.98NA1.772.282.052.501.822.15
Ramipril1.931.742.501.802.021.911.692.051.34
Ramipril and Allopurinol2.112.03NA1.931.561.89NA1.88NA

Reviews

2 reviews available for uric acid and Alloxan Diabetes

ArticleYear
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021
[New hypotheses for the mechanisms of streptozotocin and alloxan inducing diabetes mellitus].
    Yakugaku zasshi : Journal of the Pharmaceutical Society of Japan, 1992, Volume: 112, Issue:11

    Topics: Adenosine Diphosphate; Adenosine Triphosphate; Alloxan; Animals; Diabetes Mellitus, Experimental; DN

1992

Trials

1 trial available for uric acid and Alloxan Diabetes

ArticleYear
Psychological distress among health care professionals of the three COVID-19 most affected Regions in Cameroon: Prevalence and associated factors.
    Annales medico-psychologiques, 2021, Volume: 179, Issue:2

    Topics: 3' Untranslated Regions; 5'-Nucleotidase; A549 Cells; Accidental Falls; Acetylcholinesterase; Acryli

2021

Other Studies

81 other studies available for uric acid and Alloxan Diabetes

ArticleYear
Antioxidation and Nrf2-mediated heme oxygenase-1 activation contribute to renal protective effects of hydralazine in diabetic nephropathy.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2022, Volume: 151

    Topics: Allopurinol; Animals; Antioxidants; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Glucose

2022
Assessment of redox state and biochemical parameters of salivary glands in streptozotocin-induced diabetic male rats treated with mate tea (Ilex paraguariensis).
    Archives of oral biology, 2022, Volume: 143

    Topics: Amylases; Animals; Antioxidants; Catalase; Diabetes Mellitus, Experimental; Glutathione; Glutathione

2022
Oral sub-chronic treatment with Terminalia phaeocarpa Eichler (Combretaceae) reduces liver PTP1B activity in a murine model of diabetes.
    Journal of ethnopharmacology, 2023, Apr-24, Volume: 306

    Topics: Animals; Blood Glucose; Cholesterol; Combretaceae; Diabetes Mellitus, Experimental; Disease Models,

2023
Inactivation of mitochondrial pyruvate carrier promotes NLRP3 inflammasome activation and gout development via metabolic reprogramming.
    Immunology, 2023, Volume: 169, Issue:3

    Topics: Animals; Diabetes Mellitus, Experimental; Gout; Hereditary Autoinflammatory Diseases; Inflammasomes;

2023
    Food & function, 2023, Feb-21, Volume: 14, Issue:4

    Topics: Alloxan; Animals; Antioxidants; Diabetes Mellitus, Experimental; Glutathione; Inflammation; Mice; Mi

2023
Comparative impact of streptozotocin on altering normal glucose homeostasis in diabetic rats compared to normoglycemic rats.
    Scientific reports, 2023, 05-16, Volume: 13, Issue:1

    Topics: Animals; Blood Glucose; Creatinine; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Home

2023
Non-purine selective xanthine oxidase inhibitor ameliorates glomerular endothelial injury in Ins
    American journal of physiology. Renal physiology, 2020, 11-01, Volume: 319, Issue:5

    Topics: Albuminuria; Ameloblasts; Animals; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Disease

2020
Exogenous glutamine ameliorates diabetic nephropathy in a rat model of type 2 diabetes mellitus through its antioxidant and anti-inflammatory activities.
    Archives of physiology and biochemistry, 2023, Volume: 129, Issue:2

    Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Diabetes Mellitus, Experimental; Diabetes Mellitus,

2023
Influence of xanthine oxidoreductase inhibitor, topiroxostat, on body weight of diabetic obese mice.
    Nutrition & diabetes, 2021, 04-13, Volume: 11, Issue:1

    Topics: Animals; Body Weight; Diabetes Mellitus, Experimental; Enzyme Inhibitors; Fatty Acids, Nonesterified

2021
Malaysian Propolis and Metformin Synergistically Mitigate Kidney Oxidative Stress and Inflammation in Streptozotocin-Induced Diabetic Rats.
    Molecules (Basel, Switzerland), 2021, Jun-05, Volume: 26, Issue:11

    Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Creatinine; Diabetes Mellitus, Experimental; Diabet

2021
Insulin stimulates uric acid reabsorption via regulating urate transporter 1 and ATP-binding cassette subfamily G member 2.
    American journal of physiology. Renal physiology, 2017, 09-01, Volume: 313, Issue:3

    Topics: Animals; Anion Transport Proteins; ATP Binding Cassette Transporter, Subfamily G, Member 2; Blood Gl

2017
Knockout of the urate oxidase gene provides a stable mouse model of hyperuricemia associated with metabolic disorders.
    Kidney international, 2018, Volume: 93, Issue:1

    Topics: Animals; Biomarkers; Blood Glucose; Blood Pressure; Blood Urea Nitrogen; Creatinine; Diabetes Mellit

2018
Pancreatic and renal function in streptozotocin-induced type 2 diabetic rats administered combined inositol hexakisphosphate and inositol supplement.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2017, Volume: 96

    Topics: Animals; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Dietary Supplements; Drug Thera

2017
A Novel Multi-Epitope Vaccine Based on Urate Transporter 1 Alleviates Streptozotocin-Induced Diabetes by Producing Anti-URAT1 Antibody and an Immunomodulatory Effect in C57BL/6J Mice.
    International journal of molecular sciences, 2017, Oct-16, Volume: 18, Issue:10

    Topics: Animals; Antioxidants; Autoantibodies; Autoantigens; Cytokines; Diabetes Mellitus, Experimental; Dia

2017
Single-Droplet Multiplex Bioassay on a Robust and Stretchable Extreme Wetting Substrate through Vacuum-Based Droplet Manipulation.
    ACS nano, 2018, 02-27, Volume: 12, Issue:2

    Topics: Animals; Biological Assay; Colorimetry; Diabetes Mellitus, Experimental; Dimethylpolysiloxanes; Gluc

2018
Protective effects of sarsasapogenin against early stage of diabetic nephropathy in rats.
    Phytotherapy research : PTR, 2018, Volume: 32, Issue:8

    Topics: Anemarrhena; Animals; China; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Drugs, Chinese

2018
Ethanolic seeds extract of Centratherum anthelminticum reduces oxidative stress in type 2 diabetes.
    Pakistan journal of pharmaceutical sciences, 2018, Volume: 31, Issue:3(Suppleme

    Topics: Alanine Transaminase; Animals; Antioxidants; Asteraceae; Bilirubin; Creatine Kinase; Diabetes Mellit

2018
[Protective effects of Curcumin analogue L6H4 on kidney from type 2 diabetic rats].
    Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology, 2017, Jan-08, Volume: 33, Issue:1

    Topics: Animals; Blood Glucose; Blood Urea Nitrogen; Collagen Type IV; Creatinine; Curcumin; Diabetes Mellit

2017
The role of uric acid in the pathogenesis of diabetic retinopathy based on Notch pathway.
    Biochemical and biophysical research communications, 2018, 09-05, Volume: 503, Issue:2

    Topics: Animals; Cells, Cultured; Diabetes Mellitus, Experimental; Diabetic Retinopathy; Endothelial Cells;

2018
Stability of a type 2 diabetes rat model induced by high-fat diet feeding with low-dose streptozotocin injection.
    Journal of Zhejiang University. Science. B, 2018, Volume: 19, Issue:7

    Topics: Animals; Blood Glucose; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Diet, High-Fat;

2018
Amelioration of diabetic nephropathy in db/db mice treated with tibetan medicine formula Siwei Jianghuang Decoction Powder extract.
    Scientific reports, 2018, 11-12, Volume: 8, Issue:1

    Topics: Animals; Blood Glucose; Blood Urea Nitrogen; Creatinine; Curcuma; Diabetes Mellitus, Experimental; D

2018
Monosodium Urate Contributes to Retinal Inflammation and Progression of Diabetic Retinopathy.
    Diabetes, 2019, Volume: 68, Issue:5

    Topics: Allopurinol; Animals; Benzbromarone; Diabetes Mellitus, Experimental; Diabetic Retinopathy; Humans;

2019
The freeze-dried extracts of Rotheca myricoides (Hochst.) Steane & Mabb possess hypoglycemic, hypolipidemic and hypoinsulinemic on type 2 diabetes rat model.
    Journal of ethnopharmacology, 2019, Nov-15, Volume: 244

    Topics: Animals; Blood Glucose; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 2; Freeze Drying; H

2019
Effect of silymarin on streptozotocin-nicotinamide-induced type 2 diabetic nephropathy in rats.
    Iranian journal of kidney diseases, 2013, Volume: 7, Issue:2

    Topics: Albuminuria; Animals; Blood Glucose; Case-Control Studies; Creatinine; Diabetes Mellitus, Experiment

2013
Systemic perturbations of key metabolites in diabetic rats during the evolution of diabetes studied by urine metabonomics.
    PloS one, 2013, Volume: 8, Issue:4

    Topics: Animals; Biomarkers; Blood Urea Nitrogen; Creatinine; Diabetes Mellitus, Experimental; Discriminant

2013
Beneficial effects of mangiferin isolated from Salacia chinensis on biochemical and hematological parameters in rats with streptozotocin-induced diabetes.
    Pakistan journal of pharmaceutical sciences, 2014, Volume: 27, Issue:1

    Topics: Animals; Blood Glucose; Creatinine; Diabetes Mellitus, Experimental; Male; Phytotherapy; Rats; Rats,

2014
Uric acid-dependent inhibition of AMP kinase induces hepatic glucose production in diabetes and starvation: evolutionary implications of the uricase loss in hominids.
    FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2014, Volume: 28, Issue:8

    Topics: AMP Deaminase; AMP-Activated Protein Kinases; Animals; Diabetes Mellitus, Experimental; Europe; Gene

2014
Low protein diet inhibits uric acid synthesis and attenuates renal damage in streptozotocin-induced diabetic rats.
    Journal of diabetes research, 2014, Volume: 2014

    Topics: Albuminuria; Animals; Cell Proliferation; Cell Size; Diabetes Mellitus, Experimental; Diabetic Nephr

2014
Protective effect of bioflavonoid myricetin enhances carbohydrate metabolic enzymes and insulin signaling molecules in streptozotocin-cadmium induced diabetic nephrotoxic rats.
    Toxicology and applied pharmacology, 2014, Sep-01, Volume: 279, Issue:2

    Topics: Albuminuria; Animals; Biomarkers; Blood Glucose; Blood Urea Nitrogen; Cadmium Chloride; Carbohydrate

2014
Synthesis, spectroscopic, structural and thermal characterizations of vanadyl(IV) adenine complex prospective as antidiabetic drug agent.
    Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy, 2015, Jan-25, Volume: 135

    Topics: Animals; Blood Glucose; Coordination Complexes; Creatinine; Diabetes Mellitus, Experimental; Electri

2015
Fenofibrate and dipyridamole treatments in low-doses either alone or in combination blunted the development of nephropathy in diabetic rats.
    Pharmacological research, 2014, Volume: 90

    Topics: Animals; Blood Glucose; Cholesterol; Creatinine; Diabetes Mellitus, Experimental; Diabetic Nephropat

2014
Fermented soy permeate reduces cytokine level and oxidative stress in streptozotocin-induced diabetic rats.
    Journal of medicinal food, 2015, Volume: 18, Issue:1

    Topics: Animals; Anti-Inflammatory Agents; Antioxidants; Biomarkers; Diabetes Mellitus, Experimental; Diabet

2015
Hypoglycemic, antihyperglycemic, and antioxidant effects of the edible plant Anoda cristata.
    Journal of ethnopharmacology, 2015, Feb-23, Volume: 161

    Topics: Animals; Antioxidants; Blood Glucose; Diabetes Mellitus, Experimental; Flavones; Flavonoids; Free Ra

2015
Nephrotoxic effects of lead nitrate exposure in diabetic and nondiabetic rats: Involvement of oxidative stress and the protective role of sodium selenite.
    Environmental toxicology, 2016, Volume: 31, Issue:10

    Topics: Animals; Antioxidants; Blood Urea Nitrogen; Body Weight; Creatinine; Diabetes Mellitus, Experimental

2016
Effect of β-anhydroicaritin on the expression levels of tumor necrosis factor-α and matrix metalloproteinase-3 in periodontal tissue of diabetic rats.
    Molecular medicine reports, 2015, Volume: 12, Issue:2

    Topics: Animals; Benzopyrans; Blood Glucose; Body Weight; Carbohydrates; Diabetes Mellitus, Experimental; Im

2015
[Protective effect of curcumin derivative B06 on kidney of type 2 diabetic rats].
    Zhongguo ying yong sheng li xue za zhi = Zhongguo yingyong shenglixue zazhi = Chinese journal of applied physiology, 2015, Volume: 31, Issue:1

    Topics: Animals; Blood Urea Nitrogen; Collagen Type IV; Creatinine; Curcumin; Diabetes Mellitus, Experimenta

2015
Antihyperglycemic and antidiabetic effects of Ethyl (S)-2-(1-cyclohexylsulfamide carbamoyloxy) propanoate in streptozotocin-induced diabetic Wistar rats.
    European journal of pharmacology, 2016, May-15, Volume: 779

    Topics: Animals; Atherosclerosis; Bilirubin; Blood Glucose; Body Weight; Carbamates; Creatinine; Diabetes Me

2016
The possible counteractive effect of gold nanoparticles against streptozotocin-induced type 1 diabetes in young male albino rats.
    Pakistan journal of pharmaceutical sciences, 2016, Volume: 29, Issue:3

    Topics: Age Factors; Animals; Antioxidants; Biomarkers; Blood Glucose; Blood Urea Nitrogen; Creatinine; Diab

2016
Juniperus rigida Sieb. extract inhibits inflammatory responses via attenuation of TRIF-dependent signaling and inflammasome activation.
    Journal of ethnopharmacology, 2016, Aug-22, Volume: 190

    Topics: Adaptor Proteins, Vesicular Transport; Animals; Anti-Inflammatory Agents; Apoptosis Regulatory Prote

2016
Effect of Cichorium intybus L. seed extract on renal parameters in experimentally induced early and late diabetes type 2 in rats.
    Renal failure, 2017, Volume: 39, Issue:1

    Topics: Animals; Blood Glucose; Cichorium intybus; Creatinine; Diabetes Mellitus, Experimental; Diabetic Nep

2017
Evolution of oxidative stress parameters and response to oral vitamins E and C in streptozotocin-induced diabetic rats.
    The Journal of pharmacy and pharmacology, 2008, Volume: 60, Issue:7

    Topics: Administration, Oral; Animals; Ascorbic Acid; Diabetes Mellitus, Experimental; Female; Glutathione;

2008
Exercise training decreases proinflammatory profile in Zucker diabetic (type 2) fatty rats.
    Nutrition (Burbank, Los Angeles County, Calif.), 2009, Volume: 25, Issue:3

    Topics: Animals; Animals, Genetically Modified; Blood Glucose; Cholesterol; Cytokines; Diabetes Mellitus, Ex

2009
Parameters of nitrogen metabolism during insulin hypoglycemia in rats with alloxan-induced diabetes.
    Bulletin of experimental biology and medicine, 2008, Volume: 146, Issue:2

    Topics: Alloxan; Amino Acids; AMP Deaminase; Animals; Diabetes Mellitus, Experimental; Diabetic Coma; Glutam

2008
Correction of protein metabolic disorders by composite extract of Musa paradisiaca and Coccinia indica in streptozotocin-induced diabetic albino rat: an approach through the pancreas.
    Pancreas, 2009, Volume: 38, Issue:3

    Topics: Amidohydrolases; Animals; Blood Glucose; Cucurbitaceae; Diabetes Mellitus, Experimental; Glycated He

2009
Peroxynitrite mediates glomerular lesion of diabetic rat via JAK/STAT signaling pathway.
    Journal of endocrinological investigation, 2009, Volume: 32, Issue:10

    Topics: Animals; Blotting, Western; Diabetes Mellitus, Experimental; Diabetic Nephropathies; Fibronectins; I

2009
Inability of legumes to reverse diabetic-induced nephropathy in rats despite improvement in blood glucose and antioxidant status.
    Journal of medicinal food, 2010, Volume: 13, Issue:1

    Topics: Animals; Antioxidants; Biomarkers; Blood Glucose; Blood Proteins; Diabetes Mellitus, Experimental; D

2010
Diabetes mellitus in rabbits injected with dialuric acid.
    Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.), 1946, Volume: 63, Issue:3

    Topics: Animals; Barbiturates; Diabetes Mellitus, Experimental; Humans; Rabbits; Uric Acid

1946
Insulin-secretagogue, antihyperlipidemic and other protective effects of gallic acid isolated from Terminalia bellerica Roxb. in streptozotocin-induced diabetic rats.
    Chemico-biological interactions, 2011, Jan-15, Volume: 189, Issue:1-2

    Topics: Animals; Blood Glucose; Blood Proteins; C-Peptide; Cholesterol; Creatinine; Diabetes Mellitus, Exper

2011
Design, synthesis and characterization of zinc-3 hydroxy flavone, a novel zinc metallo complex for the treatment of experimental diabetes in rats.
    European journal of pharmacology, 2012, Apr-05, Volume: 680, Issue:1-3

    Topics: Alanine Transaminase; Animals; Aspartate Aminotransferases; Blood Glucose; C-Peptide; Creatinine; Di

2012
Antidiabetic effect of Eclipta alba associated with the inhibition of alpha-glucosidase and aldose reductase.
    Natural product research, 2012, Volume: 26, Issue:24

    Topics: Administration, Oral; Aldehyde Reductase; Animals; Blood Glucose; Creatinine; Diabetes Mellitus, Exp

2012
Non-insulin dependent anti-diabetic activity of (2S, 3R, 4S) 4-hydroxyisoleucine of fenugreek (Trigonella foenum graecum) in streptozotocin-induced type I diabetic rats.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2012, May-15, Volume: 19, Issue:7

    Topics: Animals; Blood Glucose; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Hypoglycemic Age

2012
Biochemical analysis of Cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus.
    International journal of nanomedicine, 2012, Volume: 7

    Topics: Analysis of Variance; Animals; Blood Glucose; Body Weight; Cassia; Creatinine; Diabetes Mellitus, Ex

2012
Nitrogen metabolism in rats with experimental diabetes during acute alcohol intoxication.
    Bulletin of experimental biology and medicine, 2011, Volume: 152, Issue:1

    Topics: Alcoholic Intoxication; Alloxan; Amino Acids; Aminohydrolases; Animals; Blood Urea Nitrogen; Central

2011
Nitrosative stress plays an important role in Wnt pathway activation in diabetic retinopathy.
    Antioxidants & redox signaling, 2013, Apr-01, Volume: 18, Issue:10

    Topics: Aldehydes; Animals; Blotting, Western; Diabetes Mellitus, Experimental; Diabetic Retinopathy; Enzyme

2013
Decreasing the diabetic complication by vanadyl(VO)2+/vitamin B 6 complex in alloxan-induced diabetic mice.
    Journal of materials science. Materials in medicine, 2013, Volume: 24, Issue:4

    Topics: Alloxan; Animals; Creatinine; Diabetes Mellitus, Experimental; Glucose Tolerance Test; Glucosephosph

2013
Oxidative stress and diabetes in pregnant rats.
    Animal reproduction science, 2002, Aug-15, Volume: 72, Issue:3-4

    Topics: Animals; Antioxidants; Congenital Abnormalities; Diabetes Mellitus, Experimental; Female; Gestationa

2002
Experimental diabetes causes breakdown of the blood-retina barrier by a mechanism involving tyrosine nitration and increases in expression of vascular endothelial growth factor and urokinase plasminogen activator receptor.
    The American journal of pathology, 2003, Volume: 162, Issue:6

    Topics: Animals; Blood-Retinal Barrier; Body Weight; Diabetes Mellitus, Experimental; Endothelial Growth Fac

2003
Confirmation of superoxide generation via xanthine oxidase in streptozotocin-induced diabetic mice.
    Free radical research, 2003, Volume: 37, Issue:7

    Topics: 1,2-Dihydroxybenzene-3,5-Disulfonic Acid Disodium Salt; Allopurinol; Animals; Blood Glucose; Diabete

2003
Influence of 2,5-dihydroxybenzylidene aminoguanidine on lipid oxidative damage and on antioxidant levels in model diabetes mellitus.
    Die Pharmazie, 2003, Volume: 58, Issue:10

    Topics: Aldehydes; Animals; Antioxidants; Benzyl Compounds; Blood Glucose; Cholesterol; Diabetes Mellitus, E

2003
[Uric acid and diabetes mellitus].
    Archives des sciences physiologiques, 1952, Volume: 6, Issue:1

    Topics: Animals; Diabetes Mellitus, Experimental; Humans; Uric Acid

1952
Effect of vitamin E supplementation on diabetes induced oxidative stress in experimental diabetes in rats.
    Indian journal of experimental biology, 2005, Volume: 43, Issue:2

    Topics: Animals; Antioxidants; Ascorbic Acid; Catalase; Diabetes Mellitus, Experimental; Erythrocytes; Gluta

2005
Pharmacokinetics of theophylline in diabetes mellitus rats: induction of CYP1A2 and CYP2E1 on 1,3-dimethyluric acid formation.
    European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences, 2005, Volume: 26, Issue:1

    Topics: Administration, Oral; Alloxan; Aminophylline; Animals; Cytochrome P-450 CYP1A2; Cytochrome P-450 CYP

2005
Protective effects of glurenorm (gliquidone) treatment on the liver injury of experimental diabetes.
    Drug and chemical toxicology, 2005, Volume: 28, Issue:4

    Topics: Alanine Transaminase; Alkaline Phosphatase; Animals; Aspartate Aminotransferases; Blood Glucose; Dia

2005
Vanadyl sulfate administration protects the streptozotocin-induced oxidative damage to brain tissue in rats.
    Molecular and cellular biochemistry, 2006, Volume: 286, Issue:1-2

    Topics: Administration, Oral; Animals; Body Weight; Brain; Catalase; Diabetes Mellitus, Experimental; Glutat

2006
Cutting edge: elimination of an endogenous adjuvant reduces the activation of CD8 T lymphocytes to transplanted cells and in an autoimmune diabetes model.
    Journal of immunology (Baltimore, Md. : 1950), 2006, Apr-01, Volume: 176, Issue:7

    Topics: Adjuvants, Immunologic; Adoptive Transfer; Animals; Antigen-Presenting Cells; Antigens; Autoimmunity

2006
Anti-diabetic effect of Murraya koenigii leaves on streptozotocin induced diabetic rats.
    Die Pharmazie, 2006, Volume: 61, Issue:10

    Topics: Animals; Blood Glucose; Blood Proteins; Blood Urea Nitrogen; Body Weight; Creatinine; Diabetes Melli

2006
Antidiabetic effect of garlic (Allium sativum L.) in normal and streptozotocin-induced diabetic rats.
    Phytomedicine : international journal of phytotherapy and phytopharmacology, 2006, Volume: 13, Issue:9-10

    Topics: Alanine Transaminase; Animals; Aspartate Aminotransferases; Blood Glucose; Cholesterol; Creatinine;

2006
Metabolism of uric acid, glutathione and nitrogen, and excretion of 11-oxysteroids and 17-ketosteroids during induction of diabetes in man with pituitary adrenocorticotropic hormone.
    The Journal of laboratory and clinical medicine, 1949, Volume: 34, Issue:2

    Topics: 17-Ketosteroids; Adrenocorticotropic Hormone; Animals; Diabetes Mellitus, Experimental; Glutathione;

1949
Diabetogenic action of alloxan-like compounds: cytotoxic effects of 5-hydroxy-pseudouric acid and dehydrouramil hydrate hydrochloride on rat pancreatic beta cells.
    Diabetologia, 1984, Volume: 27, Issue:3

    Topics: Alloxan; Animals; Blood Glucose; Diabetes Mellitus, Experimental; Islets of Langerhans; Male; Pyrimi

1984
Oxidation of uric acid. 4. Synthesis, structure, and diabetogenic action of 5-imino-2,4,6(1H,3H,5H)-pyrimidinetrione salts and their alloxan-like covalent adducts.
    Journal of medicinal chemistry, 1983, Volume: 26, Issue:6

    Topics: Animals; Chemical Phenomena; Chemistry; Crystallography; Diabetes Mellitus, Experimental; Male; Oxid

1983
Diabetogenic action of alloxan-like derivatives of uric acid.
    Experientia, 1980, Jan-15, Volume: 36, Issue:1

    Topics: Alloxan; Animals; Diabetes Mellitus, Experimental; Male; Rats; Uric Acid

1980
Serum antioxidant status in streptozotocin-induced diabetic rat.
    Hormone and metabolic research = Hormon- und Stoffwechselforschung = Hormones et metabolisme, 1994, Volume: 26, Issue:7

    Topics: Animals; Antioxidants; Blood Glucose; Brain; Ceruloplasmin; Diabetes Mellitus, Experimental; Fructos

1994
Effect of a herbomineral preparation D-400 in streptozotocin-induced diabetic rats.
    Journal of ethnopharmacology, 1996, Volume: 54, Issue:1

    Topics: Administration, Oral; Animals; Blood Glucose; Blood Urea Nitrogen; Cell Count; Creatinine; Diabetes

1996
Purine catabolism: links to mitochondrial respiration and antioxidant defenses?
    Archives of biochemistry and biophysics, 1999, Oct-01, Volume: 370, Issue:1

    Topics: Animals; Antioxidants; Diabetes Mellitus, Experimental; Diabetes Mellitus, Type 1; Guanine; Guanosin

1999
Rates of gluconeogenesis in perfused liver of alloxan-diabetic fed rats.
    Research communications in molecular pathology and pharmacology, 2000, Volume: 107, Issue:1-2

    Topics: Alloxan; Animals; Diabetes Mellitus, Experimental; Fructose; Gluconeogenesis; Glucose; Glutamine; In

2000
Structure-activity relationships of alloxan-like compounds derived from uric acid.
    British journal of pharmacology, 1986, Volume: 89, Issue:3

    Topics: Alloxan; Animals; Diabetes Mellitus, Experimental; Islets of Langerhans; Male; Rats; Rats, Inbred Le

1986
Contribution of blood phosphate esters to the blood saccharoid fraction of rats with alloxan-induced diabetes or treated with insulin or epinephrine.
    Clinical chemistry, 1974, Volume: 20, Issue:9

    Topics: Animals; Ascorbic Acid; Blood Glucose; Creatinine; Diabetes Mellitus, Experimental; Epinephrine; Ery

1974
[Morphological and biochemical studies of the effect of barbituric acid, ureidosuccinic acid, orotic acid, uracil and thymine on the diabetogenic effect of alloxan].
    Zeitschrift fur Zellforschung und mikroskopische Anatomie (Vienna, Austria : 1948), 1968, Volume: 84, Issue:1

    Topics: Adrenal Glands; Alloxan; Amino Alcohols; Animals; Barbiturates; Blood Glucose; Diabetes Mellitus, Ex

1968
Changes in the saccharoid fraction in rats with alloxan-induced diabetes or injected with epinephrine.
    Clinical chemistry, 1971, Volume: 17, Issue:9

    Topics: Alloxan; Animals; Ascorbic Acid; Blood Glucose; Creatine; Creatinine; Diabetes Mellitus, Experimenta

1971
Diabetes mellitus in patients with gout.
    JAMA, 1966, Jul-11, Volume: 197, Issue:2

    Topics: Adult; Aged; Animals; Blood Glucose; Diabetes Mellitus; Diabetes Mellitus, Experimental; Female; Glu

1966
[On the effect of pyrimidines and their precursors on the diabetogenic activity of alloxan].
    Zeitschrift fur die gesamte experimentelle Medizin einschliesslich experimentelle Chirurgie, 1966, Volume: 140, Issue:2

    Topics: Alloxan; Animals; Aspartic Acid; Barbiturates; Blood Glucose; Cytosine; Diabetes Mellitus, Experimen

1966