urb602 has been researched along with Pain* in 5 studies
5 other study(ies) available for urb602 and Pain
Article | Year |
---|---|
Peripheral antinociceptive effects of inhibitors of monoacylglycerol lipase in a rat model of inflammatory pain.
BACKGROUND AND PURPOSE The endocannabinoid 2-arachidonoylglycerol (2-AG) is degraded primarily by monoacylglycerol lipase (MGL). We compared peripheral antinociceptive effects of JZL184, a novel irreversible MGL inhibitor, with the reversible MGL-preferring inhibitor URB602 and exogenous 2-AG in rats. EXPERIMENTAL APPROACH Nociception in the formalin test was assessed in groups receiving dorsal paw injections of vehicle, JZL184 (0.001-300 µg), URB602 (0.001-600 µg), 2-AG (ED(50)), 2-AG + JZL184 (at their ED(50)), 2-AG + URB602 (at their ED(50)), AM251 (80 µg), AM251 + JZL184 (10 µg), AM630 (25 µg) or AM630 + JZL184 (10 µg). Effects of MGL inhibitors on endocannabinoid accumulation and on activities of endocannabinoid-metabolizing enzymes were assessed. KEY RESULTS Intra-paw administration of JZL184, URB602 and 2-AG suppressed early and late phases of formalin pain. JZL184 and URB602 acted through a common mechanism. JZL184 (ED(50) Phase 1: 0.06 ± 0.028; Phase 2: 0.03 ± 0.011 µg) produced greater antinociception than URB602 (ED(50) Phase 1: 120 ± 51.3; Phase 2: 66 ± 23.9 µg) or 2-AG. Both MGL inhibitors produced additive antinociceptive effects when combined with 2-AG. Antinociceptive effects of JZL184, like those of URB602, were blocked by cannabinoid receptor 1 (CB(1)) and cannabinoid receptor 2 (CB(2)) antagonists. JZL184 suppressed MGL but not fatty-acid amide hydrolase or N-arachidonoyl-phosphatidylethanolamine phospholipase D activities ex vivo. URB602 increased hind paw 2-AG without altering anandamide levels. CONCLUSIONS AND IMPLICATIONS MGL inhibitors suppressed formalin-induced pain through peripheral CB(1) and CB(2) receptor mechanisms. MGL inhibition increased paw skin 2-AG accumulation to mediate these effects. MGL represents a target for the treatment of inflammatory pain. Topics: Amidohydrolases; Animals; Arachidonic Acids; Benzodioxoles; Biphenyl Compounds; Cannabinoid Receptor Modulators; Drug Interactions; Drug Therapy, Combination; Endocannabinoids; Glycerides; Male; Monoacylglycerol Lipases; Pain; Pain Measurement; Phospholipase D; Piperidines; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2 | 2011 |
Activation of orexin 1 receptors in the periaqueductal gray of male rats leads to antinociception via retrograde endocannabinoid (2-arachidonoylglycerol)-induced disinhibition.
Orexin A and B are hypothalamic peptides known to modulate arousal, feeding, and reward via OX1 and OX2 receptors. Orexins are also antinociceptive in the brain, but their mechanism(s) of action remain unclear. Here, we investigated the antinociceptive mechanism of orexin A in the rat ventrolateral periaqueductal gray (vlPAG), a midbrain region crucial for initiating descending pain inhibition. In vlPAG slices, orexin A (30-300 nm) depressed GABAergic evoked IPSCs. This effect was blocked by an OX1 [1-(2-methylbenzoxazol-6-yl)-3-[1,5]naphthyridin-4-yl urea (SB 334867)], but not OX2 [N-acyl 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride (compound 29)], antagonist. Orexin A increased the paired-pulse ratio of paired IPSCs and decreased the frequency, but not amplitude, of miniature IPSCs. Orexin A-induced IPSC depression was mimicked by (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-napthalenylmethanone (WIN 55,212-2), a cannabinoid 1 (CB1) receptor agonist. 1-(2,4-Dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(1-piperidyl)pyrazole-3-carboxamide (AM 251), a CB1 antagonist, reversed depressant effects by both agonists. Orexin A-induced IPSC depression was prevented by 1-[6-[[(17β)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122) and tetrahydrolipstatin, inhibitors of phospholipase C (PLC) and diacylglycerol lipase (DAGL), respectively, and enhanced by cyclohexyl[1,1'-biphenyl]-3-ylcarbamate (URB602), which inhibits enzymatic degradation of 2-arachidonoylglycerol (2-AG). Moderate DAGLα, but not DAGLβ, immunoreactivity was observed in the vlPAG. Orexin A produced an overall excitatory effect on evoked postsynaptic potentials and hence increased vlPAG neuronal activity. Intra-vlPAG microinjection of orexin A reduced hot-plate nociceptive responses in rats in a manner blocked by SB 334867 and AM 251. Therefore, orexin A may produce antinociception by activating postsynaptic OX1 receptors, stimulating synthesis of 2-AG, an endocannabinoid, through a Gq-protein-mediated PLC-DAGLα enzymatic cascade culminating in retrograde inhibition of GABA release (disinhibition) in the vlPAG. Topics: Analysis of Variance; Animals; Animals, Newborn; Arachidonic Acids; Benzoxazines; Benzoxazoles; Biphenyl Compounds; Calcium Channel Blockers; Cannabinoid Receptor Modulators; Disease Models, Animal; Electric Stimulation; Endocannabinoids; Enzyme Inhibitors; Estrenes; gamma-Aminobutyric Acid; Glycerides; In Vitro Techniques; Inhibitory Postsynaptic Potentials; Intracellular Signaling Peptides and Proteins; Lactones; Male; Morpholines; Naphthalenes; Naphthyridines; Neural Inhibition; Neural Pathways; Neuropeptides; Orexin Receptors; Orexins; Orlistat; Pain; Pain Measurement; Patch-Clamp Techniques; Periaqueductal Gray; Piperidines; Pyrazoles; Pyrrolidinones; Rats; Rats, Wistar; Receptors, G-Protein-Coupled; Receptors, Neuropeptide; Urea | 2011 |
The inhibition of monoacylglycerol lipase by URB602 showed an anti-inflammatory and anti-nociceptive effect in a murine model of acute inflammation.
2-arachidonoylglycerol (2-AG) is an endocannabinoid whose hydrolysis is predominantly catalysed by the enzyme monoacylglycerol lipase (MAGL). The development of MAGL inhibitors could offer an opportunity to investigate the anti-inflammatory and anti-nociceptive role of 2-AG, which have not yet been elucidated. On these bases, URB602, a MAGL inhibitor, was tested in a murine model of inflammation/inflammatory pain.. Acute inflammation was induced by intraplantar injection of lambda-carrageenan into mice. The highest dose to be employed has been selected performing the tetrad assays for cannabimimetic activity in mice. URB602 anti-inflammatory and anti-nociceptive efficacy (assessed by plethysmometer and plantar test, respectively) was evaluated both in a preventive regimen (drug administered 30 min before carrageenan) and in a therapeutic regimen (URB602 administered 30 min after carrageenan). To elucidate the cannabinoid receptor involvement, rimonabant and SR144528, CB1 and CB2 selective antagonists, respectively, were given 15 min before URB602.. Systemic administration of URB602 elicited a dose-dependent anti-oedemigen and anti-nociceptive effect that was reversed exclusively by the CB2 receptor antagonist. The efficacy of URB602 persisted also when the compound was administered in a therapeutic regimen, suggesting the ability of URB602 to improve established disease.. The present report highlighted the ability of the selective MAGL inhibitor, URB602, to prevent and treat an acute inflammatory disease without producing adverse psychoactive effects. The data presented herein also contributed to clarify the physiological role of 2-AG in respect to inflammatory reactions, suggesting its protective role in the body. Topics: Acute Disease; Animals; Biphenyl Compounds; Body Temperature; Camphanes; Carrageenan; Disease Models, Animal; Dose-Response Relationship, Drug; Edema; Hindlimb; Hyperalgesia; Inflammation; Injections, Intraperitoneal; Male; Mice; Mice, Inbred C57BL; Monoacylglycerol Lipases; Pain; Pain Measurement; Pain Threshold; Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rimonabant | 2007 |
Fatty pain cures.
In this issue, Alvin King, Daniele Piomelli, and colleagues publish another interesting paper on inhibition of monoacylglycerol lipase (MGL). MGL is a hot target for antinociceptive agents, being the chief degrading enzyme of the endocannabinoid 2-arachidonoylglycerol. Topics: Amidohydrolases; Analgesics; Animals; Arachidonic Acids; Biphenyl Compounds; Brain; Cannabinoid Receptor Agonists; Cannabinoid Receptor Modulators; Endocannabinoids; Enzyme Inhibitors; Glycerides; Humans; Monoacylglycerol Lipases; Organophosphonates; Pain; Polyunsaturated Alkamides; Rats; Receptors, Cannabinoid | 2007 |
Role of the basolateral nucleus of the amygdala in endocannabinoid-mediated stress-induced analgesia.
Recent work in our laboratories has demonstrated that an opioid-independent form of stress-induced analgesia (SIA) is mediated by endogenous ligands for cannabinoid receptors-anandamide and 2-arachidonoylglycerol (2-AG) [A.G. Hohmann, R.L. Suplita, N.M. Bolton, M.H. Neely, D. Fegley, R. Mangieri, J.F. Krey, J.M. Walker, P.V. Holmes, J.D. Crystal, A. Duranti, A. Tontini, M. Mor, G. Tarzia, D. Piomelli, An endocannabinoid mechanism for stress-induced analgesia, Nature 435 (2005) 1108-1112]. The present study was conducted to examine the contribution of cannabinoid CB1 receptors in the basolateral nucleus of the amygdala (BLA) and central nucleus of the amygdala (CeA) to nonopioid SIA. SIA was induced by continuous footshock (3 min 0.9 mA) and quantified behaviorally using the tail-flick test. Microinjection of the CB1 antagonist/inverse agonist rimonabant (SR141716A) into the BLA, a limbic forebrain region with high densities of CB1 receptors, suppressed SIA relative to control conditions. By contrast, the same dose administered into the CeA, where CB1 immunoreactivity is largely absent, or outside the amygdala did not alter SIA. To examine the contribution of endocannabinoids in the BLA to SIA, we used selective pharmacological inhibitors of the anandamide-degrading enzyme fatty-acid amide hydrolase (FAAH) and the 2-arachidonoylglycerol-degrading enzyme monoacylglycerol lipase (MGL). The FAAH inhibitor URB597 and MGL inhibitor URB602, at doses that enhanced SIA following microinjection in the midbrain periaqueductal gray, did not alter SIA relative to control conditions. Our findings suggest that CB1 receptors in the BLA but not the CeA contribute to SIA, but pharmacological inhibition of endocannabinoid degradation at these sites does not affect the expression of stress antinociception. Topics: Amidohydrolases; Amygdala; Animals; Benzamides; Biphenyl Compounds; Cannabinoid Receptor Modulators; Carbamates; Endocannabinoids; Male; Microinjections; Monoacylglycerol Lipases; Pain; Piperidines; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Rimonabant; Stress, Psychological | 2006 |