urb602 and Disease-Models--Animal

urb602 has been researched along with Disease-Models--Animal* in 6 studies

Other Studies

6 other study(ies) available for urb602 and Disease-Models--Animal

ArticleYear
Monoacylglycerol Lipase Inactivation by Using URB602 Mitigates Myocardial Damage in a Rat Model of Cardiac Arrest.
    Critical care medicine, 2019, Volume: 47, Issue:2

    Monoacylglycerol lipase participates in organ protection by regulating the hydrolysis of the endocannabinoid 2-arachidonoylglycerol. This study investigated whether blocking monoacylglycerol lipase protects against postresuscitation myocardial injury and improves survival in a rat model of cardiac arrest and cardiopulmonary resuscitation.. Prospective randomized laboratory study.. University research laboratory.. Male Sprague-Dawley rat (n = 96).. Rats underwent 8-minute asphyxia-based cardiac arrest and resuscitation. Surviving rats were randomly divided into cardiopulmonary resuscitation + URB602 group, cardiopulmonary resuscitation group, and sham group. One minute after successful resuscitation, rats in the cardiopulmonary resuscitation + URB602 group received a single dose of URB602 (5 mg/kg), a small-molecule monoacylglycerol lipase inhibitor, whereas rats in the cardiopulmonary resuscitation group received an equivalent volume of vehicle solution. The sham rats underwent all of the procedures performed on rats in the cardiopulmonary resuscitation and cardiopulmonary resuscitation + URB602 groups minus cardiac arrest and asphyxia.. Survival was recorded 168 hours after the return of spontaneous circulation (n = 22 in each group). Compared with vehicle treatment (31.8%), URB602 treatment markedly improved survival (63.6%) 168 hours after cardiopulmonary resuscitation. Next, we used additional surviving rats to evaluate myocardial and mitochondrial injury 6 hours after return of spontaneous circulation, and we found that URB602 significantly reduced myocardial injury and prevented myocardial mitochondrial damage. In addition, URB602 attenuated the dysregulation of endocannabinoid and eicosanoid metabolism 6 hours after return of spontaneous circulation and prevented the acceleration of mitochondrial permeability transition 15 minutes after return of spontaneous circulation.. Monoacylglycerol lipase blockade may reduce myocardial and mitochondrial injury and significantly improve the resuscitation effect after cardiac arrest and cardiopulmonary resuscitation.

    Topics: Animals; Biphenyl Compounds; Cardiotonic Agents; Creatine Kinase, MB Form; Disease Models, Animal; Heart Arrest; Male; Microscopy, Electron; Monoacylglycerol Lipases; Myocardium; Rats; Rats, Sprague-Dawley

2019
Role of the endocannabinoid 2-arachidonoylglycerol in aversive responses mediated by the dorsolateral periaqueductal grey.
    European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology, 2016, Volume: 26, Issue:1

    2-arachidonoylglycerol (2-AG) is an endogenous ligand of the cannabinoid CB1 receptor. This endocannabinoid and its hydrolyzing enzyme, monoacylglycerol lipase (MAGL), are present in encephalic regions related to psychiatric disorders, including the midbrain dorsolateral periaqueductal grey (dlPAG). The dlPAG is implicated in panic disorder and its stimulation results in defensive responses proposed as a model of panic attacks. The present work verified if facilitation of 2-AG signalling in the dlPAG counteracts panic-like responses induced by local chemical stimulation. Intra-dlPAG injection of 2-AG prevented panic-like response induced by the excitatory amino acid N-methyl-d-aspartate (NMDA). This effect was mimicked by the 2-AG hydrolysis inhibitor (MAGL preferring inhibitor) URB602. The anti-aversive effect of URB602 was reversed by the CB1 receptor antagonist, AM251. Additionally, a combination of sub-effective doses of 2-AG and URB602 also prevented NMDA-induced panic-like response. Finally, immunofluorescence assay showed a significant increase in c-Fos positive cells in the dlPAG after local administration of NMDA. This response was also prevented by URB602. These data support the hypothesis that 2-AG participates in anti-aversive mechanisms in the dlPAG and reinforce the proposal that facilitation of endocannabinoid signalling could be a putative target for developing additional treatments against panic and other anxiety-related disorders.

    Topics: Animals; Arachidonic Acids; Biphenyl Compounds; Cannabinoid Receptor Antagonists; Disease Models, Animal; Dose-Response Relationship, Drug; Endocannabinoids; Fluorescent Antibody Technique; Glycerides; Male; N-Methylaspartate; Panic Disorder; Periaqueductal Gray; Piperidines; Pyrazoles; Rats, Wistar; Receptor, Cannabinoid, CB1

2016
Modulation of anxiety-like behavior by the endocannabinoid 2-arachidonoylglycerol (2-AG) in the dorsolateral periaqueductal gray.
    Behavioural brain research, 2013, Sep-01, Volume: 252

    Anandamide and 2-arachidonoylglycerol (2-AG) are the two main endocannabinoids, exerting their effects by activating type 1 (CB1r) and type 2 (CB2r) cannabinoid receptors. Anandamide inhibits anxiety-like responses through the activation of CB1r in certain brain regions, including the dorsolateral periaqueductal gray (dlPAG). 2-AG also attenuates anxiety-like responses, although the neuroanatomical sites for these effects remained unclear. Here, we tested the hypothesis that enhancing 2-AG signaling in the dlPAG would induce anxiolytic-like effects. The mechanisms involved were also investigated. Male Wistar rats received intra-dlPAG injections of 2-AG, URB602 (inhibitor of the 2-AG hydrolyzing enzyme, mono-acylglycerol lipase--MGL), AM251 (CB1r antagonist) and AM630 (CB2r antagonist). The behavior was analyzed in the elevated plus maze after the following treatments. Exp. 1: vehicle (veh) or 2-AG (5 pmol, 50 pmol, and 500 pmol). Exp. 2: veh or URB602 (30 pmol, 100 pmol or 300 pmol). Exp. 3: veh or AM251 (100 pmol) followed by veh or 2-AG (50 pmol). Exp. 4: veh or AM630 (1000 pmol) followed by veh or 2-AG. Exp. 5: veh or AM251 followed by veh or URB602 (100 pmol). Exp. 6: veh or AM630 followed by veh or URB602. 2-AG (50 pmol) and URB602 (100 pmol) significantly increased the exploration of the open arms of the apparatus, indicating an anxiolytic-like effect. These behavioral responses were prevented by CB1r (AM251) or CB2r (AM630) antagonists. Our results showed that the augmentation of 2-AG levels in the dlPAG induces anxiolytic-like effects. The mechanism seems to involve both CB1r and CB2r receptors.

    Topics: Analysis of Variance; Animals; Anxiety; Arachidonic Acids; Biphenyl Compounds; Cannabinoid Receptor Agonists; Cannabinoid Receptor Antagonists; Disease Models, Animal; Dose-Response Relationship, Drug; Endocannabinoids; Glycerides; Indoles; Male; Maze Learning; Periaqueductal Gray; Piperidines; Pyrazoles; Rats; Rats, Wistar

2013
Pretreatment with the monoacylglycerol lipase inhibitor URB602 protects from the long-term consequences of neonatal hypoxic-ischemic brain injury in rats.
    Pediatric research, 2012, Volume: 72, Issue:4

    The endocannabinoids are emerging as natural brain protective substances that exert potentially beneficial effects in several neurological disorders by virtue of their hypothermic, immunomodulatory, vascular, antioxidant, and antiapoptotic actions. This study was undertaken to assess whether preventing the deactivation of the endocannabinoid 2-arachidonoylglycerol (2-AG) with the monoacylglycerol lipase (MAGL) inhibitor URB602 can provide neuroprotective effects in hypoxia-ischemia (HI)-induced brain injury.. URB602 was administered into the right lateral ventricle 30 min before 7-day-old pup rats were subjected to HI. The neuroprotective effect was evaluated on postnatal day (PN) 14 or at adulthood (PN80) using behavioral and histological analyses. Activated caspase-3 expression and propidium iodide labeling were assessed as indexes of apoptotic and necrotic cell death, respectively.. Pretreatment with URB602 reduced apoptotic and necrotic cell death, as well as the infarct volume measured at PN14. At adulthood, URB602-treated HI animals performed better at the T-maze and the Morris maze, and also showed a significant reduction of brain damage.. These results demonstrate that a pretreatment with URB602 significantly reduces brain damage and improves functional outcome, indicating that endocannabinoid-degrading enzymes may represent an important target for neuroprotection in neonatal ischemic brain injury.

    Topics: Animals; Animals, Newborn; Apoptosis; Arachidonic Acids; Behavior, Animal; Biphenyl Compounds; Brain; Caspase 3; Disease Models, Animal; Endocannabinoids; Enzyme Activation; Enzyme Inhibitors; Female; Glycerides; Hypoxia-Ischemia, Brain; Injections, Intraventricular; Monoacylglycerol Lipases; Necrosis; Neuroprotective Agents; Rats; Rats, Sprague-Dawley; Time Factors

2012
Activation of orexin 1 receptors in the periaqueductal gray of male rats leads to antinociception via retrograde endocannabinoid (2-arachidonoylglycerol)-induced disinhibition.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2011, Oct-12, Volume: 31, Issue:41

    Orexin A and B are hypothalamic peptides known to modulate arousal, feeding, and reward via OX1 and OX2 receptors. Orexins are also antinociceptive in the brain, but their mechanism(s) of action remain unclear. Here, we investigated the antinociceptive mechanism of orexin A in the rat ventrolateral periaqueductal gray (vlPAG), a midbrain region crucial for initiating descending pain inhibition. In vlPAG slices, orexin A (30-300 nm) depressed GABAergic evoked IPSCs. This effect was blocked by an OX1 [1-(2-methylbenzoxazol-6-yl)-3-[1,5]naphthyridin-4-yl urea (SB 334867)], but not OX2 [N-acyl 6,7-dimethoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride (compound 29)], antagonist. Orexin A increased the paired-pulse ratio of paired IPSCs and decreased the frequency, but not amplitude, of miniature IPSCs. Orexin A-induced IPSC depression was mimicked by (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-napthalenylmethanone (WIN 55,212-2), a cannabinoid 1 (CB1) receptor agonist. 1-(2,4-Dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-(1-piperidyl)pyrazole-3-carboxamide (AM 251), a CB1 antagonist, reversed depressant effects by both agonists. Orexin A-induced IPSC depression was prevented by 1-[6-[[(17β)-3-methoxyestra-1,3,5(10)-trien-17-yl]amino]hexyl]-1H-pyrrole-2,5-dione (U73122) and tetrahydrolipstatin, inhibitors of phospholipase C (PLC) and diacylglycerol lipase (DAGL), respectively, and enhanced by cyclohexyl[1,1'-biphenyl]-3-ylcarbamate (URB602), which inhibits enzymatic degradation of 2-arachidonoylglycerol (2-AG). Moderate DAGLα, but not DAGLβ, immunoreactivity was observed in the vlPAG. Orexin A produced an overall excitatory effect on evoked postsynaptic potentials and hence increased vlPAG neuronal activity. Intra-vlPAG microinjection of orexin A reduced hot-plate nociceptive responses in rats in a manner blocked by SB 334867 and AM 251. Therefore, orexin A may produce antinociception by activating postsynaptic OX1 receptors, stimulating synthesis of 2-AG, an endocannabinoid, through a Gq-protein-mediated PLC-DAGLα enzymatic cascade culminating in retrograde inhibition of GABA release (disinhibition) in the vlPAG.

    Topics: Analysis of Variance; Animals; Animals, Newborn; Arachidonic Acids; Benzoxazines; Benzoxazoles; Biphenyl Compounds; Calcium Channel Blockers; Cannabinoid Receptor Modulators; Disease Models, Animal; Electric Stimulation; Endocannabinoids; Enzyme Inhibitors; Estrenes; gamma-Aminobutyric Acid; Glycerides; In Vitro Techniques; Inhibitory Postsynaptic Potentials; Intracellular Signaling Peptides and Proteins; Lactones; Male; Morpholines; Naphthalenes; Naphthyridines; Neural Inhibition; Neural Pathways; Neuropeptides; Orexin Receptors; Orexins; Orlistat; Pain; Pain Measurement; Patch-Clamp Techniques; Periaqueductal Gray; Piperidines; Pyrazoles; Pyrrolidinones; Rats; Rats, Wistar; Receptors, G-Protein-Coupled; Receptors, Neuropeptide; Urea

2011
The inhibition of monoacylglycerol lipase by URB602 showed an anti-inflammatory and anti-nociceptive effect in a murine model of acute inflammation.
    British journal of pharmacology, 2007, Volume: 152, Issue:5

    2-arachidonoylglycerol (2-AG) is an endocannabinoid whose hydrolysis is predominantly catalysed by the enzyme monoacylglycerol lipase (MAGL). The development of MAGL inhibitors could offer an opportunity to investigate the anti-inflammatory and anti-nociceptive role of 2-AG, which have not yet been elucidated. On these bases, URB602, a MAGL inhibitor, was tested in a murine model of inflammation/inflammatory pain.. Acute inflammation was induced by intraplantar injection of lambda-carrageenan into mice. The highest dose to be employed has been selected performing the tetrad assays for cannabimimetic activity in mice. URB602 anti-inflammatory and anti-nociceptive efficacy (assessed by plethysmometer and plantar test, respectively) was evaluated both in a preventive regimen (drug administered 30 min before carrageenan) and in a therapeutic regimen (URB602 administered 30 min after carrageenan). To elucidate the cannabinoid receptor involvement, rimonabant and SR144528, CB1 and CB2 selective antagonists, respectively, were given 15 min before URB602.. Systemic administration of URB602 elicited a dose-dependent anti-oedemigen and anti-nociceptive effect that was reversed exclusively by the CB2 receptor antagonist. The efficacy of URB602 persisted also when the compound was administered in a therapeutic regimen, suggesting the ability of URB602 to improve established disease.. The present report highlighted the ability of the selective MAGL inhibitor, URB602, to prevent and treat an acute inflammatory disease without producing adverse psychoactive effects. The data presented herein also contributed to clarify the physiological role of 2-AG in respect to inflammatory reactions, suggesting its protective role in the body.

    Topics: Acute Disease; Animals; Biphenyl Compounds; Body Temperature; Camphanes; Carrageenan; Disease Models, Animal; Dose-Response Relationship, Drug; Edema; Hindlimb; Hyperalgesia; Inflammation; Injections, Intraperitoneal; Male; Mice; Mice, Inbred C57BL; Monoacylglycerol Lipases; Pain; Pain Measurement; Pain Threshold; Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rimonabant

2007