urb-597 has been researched along with Weight-Gain* in 2 studies
2 other study(ies) available for urb-597 and Weight-Gain
Article | Year |
---|---|
Endocannabinoid regulation of acute and protracted nicotine withdrawal: effect of FAAH inhibition.
Evidence shows that the endocannabinoid system modulates the addictive properties of nicotine. In the present study, we hypothesized that spontaneous withdrawal resulting from removal of chronically implanted transdermal nicotine patches is regulated by the endocannabinoid system. A 7-day nicotine dependence procedure (5.2 mg/rat/day) elicited occurrence of reliable nicotine abstinence symptoms in Wistar rats. Somatic and affective withdrawal signs were observed at 16 and 34 hours following removal of nicotine patches, respectively. Further behavioral manifestations including decrease in locomotor activity and increased weight gain also occurred during withdrawal. Expression of spontaneous nicotine withdrawal was accompanied by fluctuation in levels of the endocannabinoid anandamide (AEA) in several brain structures including the amygdala, the hippocampus, the hypothalamus and the prefrontal cortex. Conversely, levels of 2-arachidonoyl-sn-glycerol were not significantly altered. Pharmacological inhibition of fatty acid amide hydrolase (FAAH), the enzyme responsible for the intracellular degradation of AEA, by URB597 (0.1 and 0.3 mg/kg, i.p.), reduced withdrawal-induced anxiety as assessed by the elevated plus maze test and the shock-probe defensive burying paradigm, but did not prevent the occurrence of somatic signs. Together, the results indicate that pharmacological strategies aimed at enhancing endocannabinoid signaling may offer therapeutic advantages to treat the negative affective state produced by nicotine withdrawal, which is critical for the maintenance of tobacco use. Topics: Acute Disease; Amidohydrolases; Animals; Anxiety; Arachidonic Acids; Benzamides; Brain; Cannabinoid Receptor Modulators; Carbamates; Cotinine; Endocannabinoids; Glycerides; Implants, Experimental; Locomotion; Male; Maze Learning; Nicotine; Polyunsaturated Alkamides; Rats; Rats, Wistar; Substance Withdrawal Syndrome; Tobacco Use Cessation Devices; Weight Gain | 2011 |
Enhancement of endocannabinoid signalling during adolescence: Modulation of impulsivity and long-term consequences on metabolic brain parameters in early maternally deprived rats.
Pharmacological modulation of the endocannabinoid system is a novel but poorly explored field for potential therapy. Early maternal deprivation represents an animal model for specific aspects of neuropsychiatric disorders. This study explored whether a pharmacological manipulation of the endocannabinoid system at adolescence may restore altered phenotypes resulting from early maternal deprivation. Wistar male rats, maternally deprived for 24 h on postnatal day (PND) 9, were administered the fatty-acid amide hydrolase (FAAH) inhibitor URB597 (0, 0.1 or 0.5 mg/kg/day) for six days during adolescence (PND 31-43), while tested in the intolerance-to-delay task. Deprived (DEP) adolescent rats showed a trend for higher impulsivity levels and an increased locomotor response to novelty when compared to non-deprived (NDEP) controls. The low dose of URB597 effectively decreased impulsive behaviour specifically in DEP subjects. Moreover, long-term metabolic brain changes, induced by drug treatment during adolescence, were detected in DEP animals using proton magnetic resonance spectroscopy ((1)H MRS). Significant changes were only found within the hippocampus: N-acetyl-aspartate and total creatine were up-regulated by the low dose; glutamate and glutamate plus glutamine were conversely down-regulated by the higher dose. In summary, administration of URB597 during adolescence increased self-control behaviour and produced enduring brain biochemical modifications, in a model for neuropsychiatric disorders. Topics: Amidohydrolases; Animals; Benzamides; Brain; Brain Chemistry; Cannabinoid Receptor Modulators; Carbamates; Conditioning, Operant; Endocannabinoids; Enzyme Inhibitors; Female; Hippocampus; Impulsive Behavior; Magnetic Resonance Spectroscopy; Maternal Deprivation; Motor Activity; Neostriatum; Nucleus Accumbens; Pregnancy; Rats; Rats, Wistar; Signal Transduction; Weight Gain | 2007 |