urb-597 has been researched along with Schizophrenia* in 5 studies
5 other study(ies) available for urb-597 and Schizophrenia
Article | Year |
---|---|
Effects of Fatty Acid Amide Hydrolase Inhibitors Acute Administration on the Positive and Cognitive Symptoms of Schizophrenia in Mice.
The connection between the endocannabinoid system (ECS) and schizophrenia is supported by a large body of research. The ECS is composed of two types cannabinoid (CB: CB1 and CB2) receptors and their endogenous ligands, endocannabinoids. The best-known endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), are intracellularly degraded by fatty acid hydrolase (FAAH) and monoacylglycerol lipase (MAGL), respectively. Thus, the function of ECS might be modulated in a direct way, through CB receptor ligands or indirectly by FAAH and MAGL inhibitors. We evaluated that the direct influence of ECS, using FAAH (URB 597) and MAGL (JZL 184) inhibitors, on the schizophrenia-like effects in mice. The behavioral schizophrenia-like symptoms were obtained in animals by using N-methyl D-aspartate (NMDA) receptor antagonists, MK-801. An acute administration of MK-801 (0.3 and 0.6 mg/kg) induced psychotic symptoms in rodents, manifested as the increase in locomotor activity, measured in actimeters, as well as the memory impairment, assessed in the passive avoidance (PA) task. We revealed that an acute administration of URB 597, at the dose of 0.3 mg/kg, attenuated MK-801 (0.6 mg/kg)-induced memory impairment. In turn, an acute administration of URB 597 at a higher dose (1 mg/kg) potentiated MK-801 (0.3 mg/kg)-induced memory impairment. Similarly, an acute administration of JZL 184 (20 and 40 mg/kg) intensified an amnestic effect of MK-801 (0.3 mg/kg). Moreover, an acute injection of JZL 184 (1 mg/kg) potentiated hyperlocomotion is provoked by MK-801 (0.3 and 0.6 mg/kg) administration. The present findings clearly indicate that ECS, through an indirect manner, modulates a variety of schizophrenia-like responses in mice. Topics: Amidohydrolases; Animals; Avoidance Learning; Benzamides; Benzodioxoles; Carbamates; Cognition; Dizocilpine Maleate; Enzyme Inhibitors; Injections; Male; Memory; Mice; Motor Activity; Piperidines; Schizophrenia | 2019 |
THC and endocannabinoids differentially regulate neuronal activity in the prefrontal cortex and hippocampus in the subchronic PCP model of schizophrenia.
Cannabis use has been associated with an increased risk to develop schizophrenia as well as symptom exacerbation in patients. In contrast, clinical studies have revealed an inverse relationship between the cerebrospinal fluid levels of the endocannabinoid anandamide and symptom severity, suggesting a therapeutic potential for endocannabinoid-enhancing drugs. Indeed, preclinical studies have shown that these drugs can reverse distinct behavioral deficits in a rodent model of schizophrenia. The mechanisms underlying the differences between exogenous and endogenous cannabinoid administration are currently unknown. Using the phencyclidine (PCP) rat model of schizophrenia, we compared the effects on neuronal activity of systematic administration of delta-9-tetrahydrocannabinol (THC) with the fatty acid amide hydrolase inhibitor URB597. Specifically, we found that the inhibitory response in the prefrontal cortex to THC administration was absent in PCP-treated rats. In contrast, an augmented response to endocannabinoid upregulation was observed in the prefrontal cortex of PCP-treated rats. Interestingly, differential effects were also observed at the neuronal population level, as endocannabinoid upregulation induced opposite effects on coordinated activity when compared with THC. Such information is important for understanding why marijuana and synthetic cannabinoid use may be contraindicated in schizophrenia patients while endocannabinoid enhancement may provide a novel therapeutic approach. Topics: Animals; Arachidonic Acids; Benzamides; Carbamates; Disease Models, Animal; Dronabinol; Endocannabinoids; Hippocampus; Male; Phencyclidine; Polyunsaturated Alkamides; Prefrontal Cortex; Rats; Rats, Sprague-Dawley; Schizophrenia; Up-Regulation | 2016 |
Distinct neuronal activation patterns are associated with PCP-induced social withdrawal and its reversal by the endocannabinoid-enhancing drug URB597.
The fatty acid amide hydrolase inhibitor, URB597, an endocannabinoid enhancing drug, reverses social withdrawal in the sub-chronic PCP rat model of schizophrenia, but reduces social interaction (SI) in controls. To identify the anatomical substrates associated with PCP-induced social withdrawal and the contrasting effects of URB597 on SI in PCP- versus saline-treated rats, we analyzed SI-induced c-Fos expression in 28 brain areas relevant to schizophrenia and/or social behavior following vehicle or URB597 administration. In saline-treated rats, SI was accompanied by changes in c-Fos expression in the infralimbic and orbitofrontal cortices, dorsomedial caudate putamen, ventrolateral nucleus of the septum, dorsolateral periaqueductal gray (dlPAG) and central amygdala. Except for the dlPAG, these changes were not observed in PCP-treated rats or in saline-treated rats receiving URB597. In the dorsomedial part of the bed nucleus of the stria terminalis (dmBNST), SI-induced c-Fos expression was observed only in PCP-treated rats. Interestingly, URB597 in PCP-treated rats restored a similar c-Fos expression pattern as observed in saline-treated rats: activation of the orbitofrontal cortex, inhibition of the central amygdala and suppression of activation of the dmBNST. These data suggest that orbitofrontal cortex, central amygdala and dmBNST play a critical role in the reversal of PCP-induced social withdrawal by URB597. Topics: Amidohydrolases; Animals; Benzamides; Brain; Carbamates; Endocannabinoids; Exploratory Behavior; Male; Neurons; Phencyclidine; Proto-Oncogene Proteins c-fos; Rats, Wistar; Schizophrenia; Schizophrenic Psychology; Social Behavior | 2016 |
Increasing endocannabinoid levels in the ventral pallidum restore aberrant dopamine neuron activity in the subchronic PCP rodent model of schizophrenia.
Schizophrenia is a debilitating disorder that affects 1% of the US population. While the exogenous administration of cannabinoids such as tetrahydrocannabinol is reported to exacerbate psychosis in schizophrenia patients, augmenting the levels of endogenous cannabinoids has gained attention as a possible alternative therapy to schizophrenia due to clinical and preclinical observations. Thus, patients with schizophrenia demonstrate an inverse relationship between psychotic symptoms and levels of the endocannabinoid anandamide. In addition, increasing endocannabinoid levels (by blockade of enzymatic degradation) has been reported to attenuate social withdrawal in a preclinical model of schizophrenia. Here we examine the effects of increasing endogenous cannabinoids on dopamine neuron activity in the sub-chronic phencyclidine (PCP) model. Aberrant dopamine system function is thought to underlie the positive symptoms of schizophrenia.. Using in vivo extracellular recordings in chloral hydrate-anesthetized rats, we now demonstrate an increase in dopamine neuron population activity in PCP-treated rats.. Interestingly, endocannabinoid upregulation, induced by URB-597, was able to normalize this aberrant dopamine neuron activity. Furthermore, we provide evidence that the ventral pallidum is the site where URB-597 acts to restore ventral tegmental area activity.. Taken together, we provide preclinical evidence that augmenting endogenous cannabinoids may be an effective therapy for schizophrenia, acting in part to restore ventral pallidal activity. Topics: Animals; Basal Forebrain; Benzamides; Carbamates; Central Nervous System Agents; Disease Models, Animal; Dopaminergic Neurons; Endocannabinoids; Hippocampus; Male; Microelectrodes; Phencyclidine; Rats, Sprague-Dawley; Schizophrenia; Sodium Channel Blockers; Tetrodotoxin; Ventral Tegmental Area | 2014 |
Phencyclidine-induced social withdrawal results from deficient stimulation of cannabinoid CB₁ receptors: implications for schizophrenia.
The neuronal mechanisms underlying social withdrawal, one of the core negative symptoms of schizophrenia, are not well understood. Recent studies suggest an involvement of the endocannabinoid system in the pathophysiology of schizophrenia and, in particular, of negative symptoms. We used biochemical, pharmacological, and behavioral approaches to investigate the role played by the endocannabinoid system in social withdrawal induced by sub-chronic administration of phencyclidine (PCP). Pharmacological enhancement of endocannabinoid levels via systemic administration of URB597, an inhibitor of endocannabinoid degradation, reversed social withdrawal in PCP-treated rats via stimulation of CB1 receptors, but reduced social interaction in control animals through activation of a cannabinoid/vanilloid-sensitive receptor. In addition, the potent CB agonist CP55,940 reversed PCP-induced social withdrawal in a CB₁-dependent manner, whereas pharmacological blockade of CB₁ receptors by either AM251 or SR141716 reduced the time spent in social interaction in control animals. PCP-induced social withdrawal was accompanied by a decrease of anandamide (AEA) levels in the amygdala and prefrontal cortex, and these deficits were reversed by URB597. As CB₁ receptors are predominantly expressed on GABAergic interneurons containing the anxiogenic peptide cholecystokinin (CCK), we also examined whether the PCP-induced social withdrawal resulted from deficient CB₁-mediated modulation of CCK transmission. The selective CCK2 antagonist LY225910 blocked both PCP- and AM251-induced social withdrawal, but not URB597 effect in control rats. Taken together, these findings indicate that AEA-mediated activation of CB₁ receptors is crucial for social interaction, and that PCP-induced social withdrawal results from deficient endocannabinoid transmission. Topics: Amidohydrolases; Amygdala; Animals; Arachidonic Acids; Benzamides; Cannabinoid Receptor Agonists; Cannabinoid Receptor Antagonists; Carbamates; Cyclohexanols; Dose-Response Relationship, Drug; Endocannabinoids; Male; Phencyclidine; Piperidines; Polyunsaturated Alkamides; Prefrontal Cortex; Pyrazoles; Quinazolinones; Rats; Receptor, Cannabinoid, CB1; Receptor, Cholecystokinin B; Rimonabant; Schizophrenia; Social Behavior | 2013 |