urb-597 and Pain

urb-597 has been researched along with Pain* in 30 studies

Reviews

1 review(s) available for urb-597 and Pain

ArticleYear
Transient receptor potential ankyrin 1 (TRPA1) channel as emerging target for novel analgesics and anti-inflammatory agents.
    Journal of medicinal chemistry, 2010, Jul-22, Volume: 53, Issue:14

    Topics: Analgesics; Animals; Anti-Inflammatory Agents; Asthma; Humans; Ion Channel Gating; Neurons; Pain; Peripheral Nervous System Diseases; Pulmonary Disease, Chronic Obstructive; Transient Receptor Potential Channels

2010

Other Studies

29 other study(ies) available for urb-597 and Pain

ArticleYear
Effects of Fatty Acid Amide Hydroxylase Inhibitor URB597 on the Catecholaminergic Activity of the Adrenal Medulla in Stressed Male and Female Rats.
    Pharmacology, 2022, Volume: 107, Issue:1-2

    The present study examined the effects of fatty acid amide hydrolase inhibitor URB597 on the level of plasma catecholamine and their content, synthesis, and degradation in the adrenal medulla of male and female rats subjected to chronic unpredictable stress (CUS).. Male and female Wistar rats were exposed to the 6 weeks of CUS and treated intraperitoneally with either 0.3 mg/kg/day of URB597 or vehicle in the last 2 weeks of stress protocol. Catecholamines' plasma levels and catecholamines' levels in adrenal medulla were examined using Elabscience ELISA kits. Western blot analysis was used to detect the protein in the medulla.. The results of our experiment showed that adrenal weights and catecholamine of unstressed control were higher in females and that CUS induced further enlargement of adrenal glands and catecholamine content and its synthesis compared to male rats. CUS caused an increase of plasma norepinephrine and depletion of norepinephrine content as well as unchanged synthesis and degradation of catecholamine in the adrenal medulla of male rats. URB597 reduced enlarged adrenals and catecholamine content and its synthesis in stressed female rats. URB597 reduces increased plasma norepinephrine and restores its content in the adrenal medulla, unchanging the expression of enzyme synthesis, while reduced protein levels of monoamine oxidase A in male rats are exposed to CUS.. Our results support the role of endocannabinoids as an antistress mechanism that inhibits elevated adrenomedullary activation and promotes its recovery to baseline in both male and female stressed rats.

    Topics: Adrenal Medulla; Amidohydrolases; Animals; Benzamides; Carbamates; Catechol O-Methyltransferase; Catecholamines; Endocannabinoids; Female; Male; Monoamine Oxidase; Organ Size; Pain; Rats, Wistar; Stress, Psychological

2022
Cannabidiol increases the nociceptive threshold in a preclinical model of Parkinson's disease.
    Neuropharmacology, 2020, Volume: 163

    Medications that improve pain threshold can be useful in the pharmacotherapy of Parkinson's disease (PD). Pain is a prevalent PD's non-motor symptom with a higher prevalence of analgesic drugs prescription for patients. However, specific therapy for PD-related pain are not available. Since the endocannabinoid system is expressed extensively in different levels of pain pathway, drugs designed to target this system have promising therapeutic potential in the modulation of pain. Thus, we examined the effects of the 6-hydroxydopamine- induced PD on nociceptive responses of mice and the influence of cannabidiol (CBD) on 6-hydroxydopamine-induced nociception. Further, we investigated the pathway involved in the analgesic effect of the CBD through the co-administration with a fatty acid amide hydrolase (FAAH) inhibitor, increasing the endogenous anandamide levels, and possible targets from anandamide, i.e., the cannabinoid receptors subtype 1 and 2 (CB1 and CB2) and the transient receptor potential vanilloid type 1 (TRPV1). We report that 6-hydroxydopamine- induced parkinsonism decreases the thermal and mechanical nociceptive threshold, whereas CBD (acute and chronic treatment) reduces this hyperalgesia and allodynia evoked by 6-hydroxydopamine. Moreover, ineffective doses of either FAAH inhibitor or TRPV1 receptor antagonist potentialized the CBD-evoked antinociception while an inverse agonist of the CB1 and CB2 receptor prevented the antinociceptive effect of the CBD. Altogether, these results indicate that CBD can be a useful drug to prevent the parkinsonism-induced nociceptive threshold reduction. They also suggest that CB1 and TRPV1 receptors are important for CBD-induced analgesia and that CBD could produce these analgesic effects increasing endogenous anandamide levels.

    Topics: Amidohydrolases; Analgesics; Animals; Benzamides; Brain; Cannabidiol; Capsaicin; Carbamates; Celecoxib; Hyperalgesia; Male; Mice; Mice, Inbred C57BL; Morphine; Nociception; Oxidopamine; Pain; Parkinson Disease; Piperidines; Pyrazoles; Thienamycins

2020
The prefrontal cortical endocannabinoid system modulates fear-pain interactions in a subregion-specific manner.
    British journal of pharmacology, 2019, Volume: 176, Issue:10

    The emotional processing and coordination of top-down responses to noxious and conditioned aversive stimuli involves the medial prefrontal cortex (mPFC). Evidence suggests that subregions of the mPFC [infralimbic (IfL), prelimbic (PrL) and anterior cingulate (ACC) cortices] differentially alter the expression of contextually induced fear and nociceptive behaviour. We investigated the role of the endocannabinoid system in the IfL, PrL and ACC in formalin-evoked nociceptive behaviour, fear-conditioned analgesia (FCA) and conditioned fear in the presence of nociceptive tone.. AM251 attenuated FCA when injected into the IfL or PrL and reduced contextually induced freezing behaviour when injected intra-IfL but not intra-PrL or intra-ACC. Intra-ACC administration of AM251 alone or in combination with URB597 had no effect on FCA or freezing. URB597 attenuated FCA and freezing behaviour when injected intra-IfL, prolonged the expression of FCA when injected intra-PrL and had no effect on these behaviours when injected intra-ACC.. These results suggest important and differing roles for FAAH substrates or CB

    Topics: Animals; Behavior, Animal; Benzamides; Cannabinoid Receptor Modulators; Carbamates; Conditioning, Psychological; Endocannabinoids; Fear; Pain; Pain Measurement; Piperidines; Prefrontal Cortex; Pyrazoles; Rats

2019
Piperidinyl thiazole isoxazolines: A new series of highly potent, slowly reversible FAAH inhibitors with analgesic properties.
    Bioorganic & medicinal chemistry letters, 2016, 06-15, Volume: 26, Issue:12

    Fatty acid amide hydrolase (FAAH) is a membrane anchored serine hydrolase that has a principle role in the metabolism of the endogenous cannabinoid anandamide. Docking studies using representative FAAH crystal structures revealed that compounds containing a novel piperidinyl thiazole isoxazoline core fit within the ligand binding domains. New potential FAAH inhibitors were designed and synthesized incorporating urea, carbamate, alkyldione and thiourea reactive centers as potential pharmacophores. A small library of candidate compounds (75) was then screened against human FAAH leading to the identification of new carbamate and urea based inhibitors (Ki=pM and nM, respectively). Representative carbamate and urea based chemotypes displayed slow, time dependent inhibition kinetics leading to enzyme inactivation which was slowly reversible. However, evidence indicated that features of the mechanism of inactivation differ between the two pharmacophore types. Selected compounds were also evaluated for analgesic activity in the mouse-tail flick test.

    Topics: Amidohydrolases; Analgesics; Animals; Dose-Response Relationship, Drug; Enzyme Inhibitors; Humans; Isoxazoles; Kinetics; Male; Mice; Mice, Inbred ICR; Molecular Docking Simulation; Molecular Structure; Pain; Pain Measurement; Piperidines; Structure-Activity Relationship; Thiazoles

2016
A multi-target approach for pain treatment: dual inhibition of fatty acid amide hydrolase and TRPV1 in a rat model of osteoarthritis.
    Pain, 2015, Volume: 156, Issue:5

    The pharmacological inhibition of anandamide (AEA) hydrolysis by fatty acid amide hydrolase (FAAH) attenuates pain in animal models of osteoarthritis (OA) but has failed in clinical trials. This may have occurred because AEA also activates transient receptor potential vanilloid type 1 (TRPV1), which contributes to pain development. Therefore, we investigated the effectiveness of the dual FAAH-TRPV1 blocker OMDM-198 in an MIA-model of osteoarthritic pain. We first investigated the MIA-induced model of OA by (1) characterizing the pain phenotype and degenerative changes within the joint using X-ray microtomography and (2) evaluating nerve injury and inflammation marker (ATF-3 and IL-6) expression in the lumbar dorsal root ganglia of osteoarthritic rats and differences in gene and protein expression of the cannabinoid CB1 receptors FAAH and TRPV1. Furthermore, we compared OMDM-198 with compounds acting exclusively on FAAH or TRPV1. Osteoarthritis was accompanied by the fragmentation of bone microstructure and destroyed cartilage. An increase of the mRNA levels of ATF3 and IL-6 and an upregulation of AEA receptors and FAAH in the dorsal root ganglia were observed. OMDM-198 showed antihyperalgesic effects in the OA model, which were comparable with those of a selective TRPV1 antagonist, SB-366,791, and a selective FAAH inhibitor, URB-597. The effect of OMDM-198 was attenuated by the CB1 receptor antagonist, AM-251, and by the nonpungent TRPV1 agonist, olvanil, suggesting its action as an "indirect" CB1 agonist and TRPV1 antagonist. These results suggest an innovative strategy for the treatment of OA, which may yield more satisfactory results than those obtained so far with selective FAAH inhibitors in human OA.

    Topics: Activating Transcription Factor 3; Amidohydrolases; Anilides; Animals; Arachidonic Acids; Benzamides; Capsaicin; Carbamates; Cinnamates; Disease Models, Animal; Endocannabinoids; Ganglia, Spinal; Gene Expression; Hyperalgesia; Inflammation; Interleukin-6; Lumbar Vertebrae; Male; Osteoarthritis; Pain; Pain Management; Pain Measurement; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; TRPV Cation Channels

2015
Structure-affinity relationships and pharmacological characterization of new alkyl-resorcinol cannabinoid receptor ligands: Identification of a dual cannabinoid receptor/TRPA1 channel agonist.
    Bioorganic & medicinal chemistry, 2014, Sep-01, Volume: 22, Issue:17

    In our ongoing program aimed at deeply investigating the endocannabinoid system (ES), a set of new alkyl-resorcinol derivatives was prepared focusing on the nature and the importance of the carboxamide functionality. Binding studies on CB1 and CB2 receptors, monoacylglycerol lipase (MAGL) and fatty acid amide hydrolase (FAAH) showed that some of the newly developed compounds behaved as very potent cannabinoid receptor ligands (Ki in the nanomolar range) while, however, none of them was able to inhibit MAGL and/or FAAH. Derivative 11 was a potent CB1 and CB2 ligand, with Ki values similar to WIN 55,212, exhibiting a CB1 and CB2 agonist profile in vitro. In the formalin test of peripheral acute and inflammatory pain in mice, this compound showed a weak and delayed antinociceptive effect against the second phase of the nocifensive response, exhibiting, interestingly, a quite potent transient receptor potential ankyrin type-1 (TRPA1) channel agonist activity. Moreover, derivative 14, characterized by lower affinity but higher CB2 selectivity than 11, proved to behave as a weak CB2 competitive inverse agonist.

    Topics: Analgesics; Animals; Calcium Channels; Cell Survival; Cells, Cultured; CHO Cells; Cricetulus; Dose-Response Relationship, Drug; Humans; Ligands; Male; Mice; Molecular Structure; Nerve Tissue Proteins; NIH 3T3 Cells; Nociception; Pain; Pain Measurement; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Resorcinols; Structure-Activity Relationship; Transient Receptor Potential Channels; TRPA1 Cation Channel

2014
Actions of the dual FAAH/MAGL inhibitor JZL195 in a murine inflammatory pain model.
    Neuropharmacology, 2014, Volume: 81

    The analgesic efficacy of cannabinoids in chronic pain models is limited by side-effects. It has been proposed that this might be overcome by using agents which indirectly activate the endocannabinoid system. We examined the analgesic and side-effect profile of the dual FAAH/MAGL inhibitor JZL195 in an inflammatory pain model. The effect of systemic injections of a range of doses of JZL195 and the pan-cannabinoid receptor agonist WIN55212 were performed 1 day following intraplantar injection of CFA in C57BL/6 mice. JZL195 and WIN55212 both reduced mechanical allodynia and thermal hyperalgesia, and produced catalepsy and sedation in a dose dependent manner. Unlike WIN55212, JZL195 reduced allodynia at doses below those at which side-effects were observed. The effects of JZL195 and WIN55212 were abolished by co-application with the CB1 antagonist AM251. The CB2 antagonist also reduced the JZL195 anti-allodynia, and reversed the WIN55212 anti-allodynia. The reduction in allodynia produced by JZL195 was greater than that produced individually by the FAAH and MAGL inhibitors, URB597 and JZL184. These findings suggest that JZL195 reduces inflammation induced allodynia at doses below those which produce side-effects, and displays greater efficacy that FAAH or MAGL inhibitors. Thus, dual FAAH/MAGL inhibition has the potential to alleviate inflammatory pain with reduced cannabinoid-like side-effects.

    Topics: Amidohydrolases; Analgesics; Analysis of Variance; Animals; Arthritis, Experimental; Benzamides; Benzoxazines; Carbamates; Disease Models, Animal; Dose-Response Relationship, Drug; Exploratory Behavior; Male; Mice; Mice, Inbred C57BL; Morpholines; Motor Activity; Naphthalenes; Pain; Pain Measurement; Piperazines; Piperidines; Pyrazoles; Time Factors

2014
Effects of the fatty acid amide hydrolase inhibitor URB597 on pain-stimulated and pain-depressed behavior in rats.
    Behavioural pharmacology, 2014, Volume: 25, Issue:2

    Cannabinoid receptor (CBR) agonists produce antinociception in conventional preclinical assays of pain-stimulated behavior but are not effective in preclinical assays of pain-depressed behavior. Fatty acid amide hydrolase (FAAH) inhibitors increase physiological levels of the endocannabinoid anandamide, which may confer improved efficacy and safety relative to direct CBR agonists. To further evaluate FAAH inhibitors as candidate analgesics, this study assessed the effects of the FAAH inhibitor URB597 in assays of acute pain-stimulated and pain-depressed behavior in male Sprague-Dawley rats. Intraperitoneal injection of dilute lactic acid served as a noxious stimulus to stimulate a stretching response or depress positively reinforced operant behavior (intracranial self-stimulation), and URB597 was tested 1 and 4 h after administration. Consistent with FAAH inhibitor effects in other assays of pain-stimulated behavior, URB597 (1-10 mg/kg intraperitoneally) produced dose-related and CB1R-mediated decreases in acid-stimulated stretching. Conversely, in the assay of acid-depressed intracranial self-stimulation, URB597 produced a delayed, partial and non-CBR-mediated antinociceptive effect. The antinociceptive dose of URB597 (10 mg/kg) increased plasma and brain anandamide levels. These results suggest that URB597 produces antinociception in these models of 'pain stimulated' and 'pain depressed' behavior, but with different rates of onset and differential involvement of CBRs.

    Topics: Amidohydrolases; Analgesics; Animals; Arachidonic Acids; Behavior, Animal; Benzamides; Brain; Carbamates; Conditioning, Operant; Depression; Dose-Response Relationship, Drug; Electric Stimulation; Endocannabinoids; Enzyme Inhibitors; Implantable Neurostimulators; Injections, Intraperitoneal; Lactic Acid; Male; Pain; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Receptors, Cannabinoid; Self Administration

2014
Endocannabinoid modulation by FAAH and monoacylglycerol lipase within the analgesic circuitry of the periaqueductal grey.
    British journal of pharmacology, 2014, Volume: 171, Issue:23

    Endogenous cannabinoids (endocannabinoids) in the periaqueductal grey (PAG) play a vital role in mediating stress-induced analgesia. This analgesic effect of endocannabinoids is enhanced by pharmacological inhibition of their degradative enzymes. However, the specific effects of endocannabinoids and the inhibitors of their degradation are largely unknown within this pain-modulating region.. In vitro electrophysiological recordings were conducted from PAG neurons in rat midbrain slices. The effects of the major endocannabinoids and their degradation inhibitors on inhibitory GABAergic synaptic transmission were examined.. Exogenous application of the endocannabinoid, anandamide (AEA), but not 2-arachidonoylglycerol (2-AG), produced a reduction in inhibitory GABAergic transmission in PAG neurons. This AEA-induced suppression of inhibition was enhanced by the fatty acid amide hydrolase (FAAH) inhibitor, URB597, whereas a 2-AG-induced suppression of inhibition was unmasked by the monoacylglycerol lipase (MGL) inhibitor, JZL184. In addition, application of the CB1 receptor antagonist, AM251, facilitated the basal GABAergic transmission in the presence of URB597 and JZL184, which was further enhanced by the dual FAAH/MGL inhibitor, JZL195.. Our results indicate that AEA and 2-AG act via disinhibition within the PAG, a cellular action consistent with analgesia. These actions of AEA and 2-AG are tightly regulated by their respective degradative enzymes, FAAH and MGL. Furthermore, individual or combined inhibition of FAAH and/or MGL enhanced tonic disinhibition within the PAG. Therefore, the current findings support the therapeutic potential of FAAH and MGL inhibitors as a novel pharmacotherapy for pain.

    Topics: Amidohydrolases; Animals; Arachidonic Acids; Benzamides; Benzodioxoles; Carbamates; Endocannabinoids; Female; Glycerides; In Vitro Techniques; Inhibitory Postsynaptic Potentials; Male; Monoacylglycerol Lipases; Neurons; Pain; Periaqueductal Gray; Piperidines; Polyunsaturated Alkamides; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Synaptic Transmission

2014
Synthesis, SAR study, and biological evaluation of a series of piperazine ureas as fatty acid amide hydrolase (FAAH) inhibitors.
    Bioorganic & medicinal chemistry, 2013, Jan-01, Volume: 21, Issue:1

    A series of piperazine ureas was designed, synthesized, and evaluated for their potential as novel orally available fatty acid amide hydrolase (FAAH) inhibitors that are therapeutically effective against pain. We carried out an optimization study of the lead compound 3 to improve its DMPK profile as well as in vitro potency. We identified the thiazole compound 60j with potent inhibitory activity, high brain permeability, and good bioavailability. Compound 60j showed a potent and dose-dependent anti-nociceptive effect in the acetic acid-induced writhing test in mice.

    Topics: Amidohydrolases; Analgesics; Animals; Humans; Mice; Molecular Docking Simulation; Pain; Piperazine; Piperazines; Rats; Structure-Activity Relationship; Thiazoles; Urea

2013
Increased anandamide uptake by sensory neurons contributes to hyperalgesia in a model of cancer pain.
    Neurobiology of disease, 2013, Volume: 58

    Opioids do not effectively manage pain in many patients with advanced cancer. Because anandamide (AEA) activation of cannabinoid type-1 receptors (CB1R) on nociceptors reduces nociception, manipulation of AEA metabolism in the periphery may be an effective alternative or adjuvant therapy in the management of cancer pain. AEA is hydrolyzed by the intracellular enzyme fatty acid amide hydrolase (FAAH), and this enzyme activity contributes to uptake of AEA into neurons and to reduction of AEA available to activate CB1R. We used an in vitro preparation of adult murine dorsal root ganglion (DRG) neurons co-cultured with fibrosarcoma cells to investigate how tumors alter the uptake of AEA into neurons. Evidence that the uptake of [(3)H]AEA into dissociated DRG cells in the co-culture model mimicked the increase in uptake that occurred in DRG cells from tumor-bearing mice supported the utility of the in vitro model to study AEA uptake. Results with the fluorescent AEA analog CAY10455 confirmed that an increase in uptake in the co-culture model occurred in neurons. One factor that contributed to the increase in [(3)H]AEA uptake was an increase in total cellular cholesterol in the cancer condition. Treatment with the FAAH inhibitor URB597 reduced CAY10455 uptake in the co-culture model to the level observed in DRG neurons maintained in the control condition (i.e., in the absence of fibrosarcoma cells), and this effect was paralleled by OMDM-1, an inhibitor of AEA uptake, at a concentration that had no effect on FAAH activity. Maximally effective concentrations of the two drugs together produced a greater reduction than was observed with each drug alone. Treatment with BMS309403, which competes for AEA binding to fatty acid binding protein-5, mimicked the effect of OMDM-1 in vitro. Local injection of OMDM-1 reduced hyperalgesia in vivo in mice with unilateral tumors in and around the calcaneous bone. Intraplantar injection of OMDM-1 (5μg) into the tumor-bearing paw reduced mechanical hyperalgesia through a CB1R-dependent mechanism and also reduced a spontaneous nocifensive behavior. The same dose reduced withdrawal responses evoked by suprathreshold mechanical stimuli in naive mice. These data support the conclusion that OMDM-1 inhibits AEA uptake by a mechanism that is independent of inhibition of FAAH and provide a rationale for the development of peripherally restricted drugs that decrease AEA uptake for the management of cancer pain.

    Topics: Animals; Arachidonic Acids; Benzamides; Brain Neoplasms; Cannabinoid Receptor Antagonists; Carbamates; Cells, Cultured; Coculture Techniques; Disease Models, Animal; Endocannabinoids; Enzyme Inhibitors; Fibrosarcoma; Fluorescent Dyes; Ganglia, Spinal; Hyperalgesia; Indoles; Lactones; Male; Mice; Mice, Inbred C3H; Pain; Pain Threshold; Polyunsaturated Alkamides; Sensory Receptor Cells; Statistics, Nonparametric; Tritium

2013
Fear-induced suppression of nociceptive behaviour and activation of Akt signalling in the rat periaqueductal grey: role of fatty acid amide hydrolase.
    Journal of psychopharmacology (Oxford, England), 2012, Volume: 26, Issue:1

    The endocannabinoid system regulates nociception and aversion and mediates fear-conditioned analgesia (FCA). We investigated the effects of the fatty acid amide hydrolase (FAAH) inhibitor URB597, which inhibits the catabolism of the endocannabinoid anandamide and related N-acylethanolamines, on expression of FCA and fear and pain related behaviour per se in rats. We also examined associated alterations in the expression of the signal transduction molecule phospho-Akt in the periaqueductal grey (PAG) by immunoblotting. FCA was modelled by assessing formalin-evoked nociceptive behaviour in an arena previously paired with footshock. URB597 (0.3 mg/kg, i.p.) enhanced FCA and increased fear-related behaviour in formalin-treated rats. Conditioned fear per se in non-formalin-treated rats was associated with increased expression of phospho-Akt in the PAG. URB597 reduced the expression of fear-related behaviour in the early part of the trial, an effect that was accompanied by attenuation of the fear-induced increase in phospho-Akt expression in the PAG. Intra-plantar injection of formalin also reduced the fear-induced increase in phospho-Akt expression. These data provide evidence for a role of FAAH in FCA, fear responding in the presence or absence of nociceptive tone, and fear-evoked increases in PAG phospho-Akt expression. In addition, the results suggest that fear-evoked activation of Akt signalling in the PAG is abolished in the presence of nociceptive tone.

    Topics: Amidohydrolases; Analgesia; Animals; Arachidonic Acids; Behavior, Animal; Benzamides; Cannabinoid Receptor Modulators; Carbamates; Conditioning, Psychological; Endocannabinoids; Ethanolamines; Exploratory Behavior; Fear; Formaldehyde; Hippocampus; Male; Motor Activity; Nociception; Pain; Periaqueductal Gray; Polyunsaturated Alkamides; Proto-Oncogene Proteins c-akt; Rats; Signal Transduction

2012
Peripheral FAAH inhibition causes profound antinociception and protects against indomethacin-induced gastric lesions.
    Pharmacological research, 2012, Volume: 65, Issue:5

    Fatty-acid amide hydrolase (FAAH) catalyzes the intracellular hydrolysis of the endocannabinoid anandamide and other bioactive lipid amides. In the present study, we conducted a comparative characterization of the effects of the newly identified brain-impermeant FAAH inhibitor, URB937 ([3-(3-carbamoylphenyl)-4-hydroxy-phenyl] N-cyclohexylcarbamate), in various rodent models of acute and persistent pain. When administered by the oral route in mice, URB937 was highly active (median effective dose, ED(50), to inhibit liver FAAH activity: 0.3mgkg(-1)) and had a bioavailability of 5.3%. The antinociceptive effects of oral URB937 were investigated in mouse models of acute inflammation (carrageenan), peripheral nerve injury (chronic sciatic nerve ligation) and arthritis (complete Freund's adjuvant). In all models, URB937 was as effective or more effective than standard analgesic and anti-inflammatory drugs (indomethacin, gabapentin, dexamethasone) and reversed pain-related responses (mechanical hyperalgesia, thermal hyperalgesia, and mechanical allodynia) in a dose-dependent manner. ED(50) values ranged from 0.2 to 10mgkg(-1), depending on model and readout. Importantly, URB937 was significantly more effective than two global FAAH inhibitors, URB597 and PF-04457845, in the complete Freund's adjuvant model. The effects of a combination of URB937 with the non-steroidal anti-inflammatory agent, indomethacin, were examined in the carrageenan and chronic sciatic nerve ligation models. Isobolographic analyses showed that the two compounds interacted synergistically to attenuate pain-related behaviors. Furthermore, URB937 reduced the number and severity of gastric lesions produced by indomethacin, while exerting no ulcerogenic effect when administered alone. The results indicate that the peripheral FAAH inhibitor URB937 is more effective than globally active FAAH inhibitors at inhibiting inflammatory pain. Our findings further suggest that FAAH and cyclooxygenase inhibitors interact functionally in peripheral tissues, to either enhance or hinder each other's actions.

    Topics: Amidohydrolases; Analgesics; Animals; Anti-Inflammatory Agents, Non-Steroidal; Arthritis, Experimental; Benzamides; Cannabinoids; Carbamates; Disease Models, Animal; Enzyme Inhibitors; Hyperalgesia; Indomethacin; Male; Mice; Pain; Pyridazines; Sciatic Nerve; Stomach Ulcer; Urea

2012
Effects of alterations in cannabinoid signaling, alone and in combination with morphine, on pain-elicited and pain-suppressed behavior in mice.
    The Journal of pharmacology and experimental therapeutics, 2012, Volume: 342, Issue:1

    Inhibitors of fatty acid amide hydrolase (FAAH) and anandamide (AEA) uptake, which limit the degradation of endogenous cannabinoids, have received interest as potential therapeutics for pain. There is also evidence that endogenous cannabinoids mediate the antinociceptive effects of opioids. Assays of pain-elicited and pain-suppressed behavior have been used to differentiate the effects of drugs that specifically alter nociception from drugs that alter nociception caused by nonspecific effects such as catalepsy or a general suppression of activity. Using such procedures, this study examines the effects of the direct cannabinoid type 1 (CB1) agonist (-)-cis-3-[2-hydroxy-4-(1,1-dimethylheptyl)phenyl]-trans-4-(3-hydroxypropyl)cyclohexanol (CP55940), the FAAH inhibitor cyclohexylcarbamic acid 3'-carbamoylbiphenyl-3-yl ester (URB597), and the AEA uptake inhibitor N-(4-hydroxyphenyl) arachidonylamide (AM404). Additional experiments examined these compounds in combination with morphine. CP55940 produced antinociception in assays of pain-elicited, but not pain-suppressed, behavior and disrupted responding in an assay of schedule-controlled behavior. URB597 and AM404 produced antinociception in assays of pain-elicited and pain-suppressed behavior in which acetic acid was the noxious stimulus, but had no effect on the hotplate and schedule-controlled responding. CP55940 in combination with morphine resulted in effects greater than those of morphine alone in assays of pain-elicited and scheduled-controlled behavior but not pain-suppressed behavior. URB597 in combination with morphine resulted in enhanced morphine effects in assays of pain-elicited and pain-suppressed behavior in which diluted acetic acid was the noxious stimulus, but did not alter morphine's effects on the hotplate or schedule-controlled responding. These studies suggest that, compared with direct CB1 agonists, manipulations of endogenous cannabinoid signaling have enhanced clinical potential; however, their effects depend on the type of noxious stimulus.

    Topics: Amidohydrolases; Analgesics; Animals; Arachidonic Acids; Benzamides; Cannabinoid Receptor Modulators; Carbamates; Cyclohexanols; Endocannabinoids; Male; Mice; Mice, Inbred C57BL; Morphine; Nociception; Pain; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1

2012
Lack of effect of chronic pre-treatment with the FAAH inhibitor URB597 on inflammatory pain behaviour: evidence for plastic changes in the endocannabinoid system.
    British journal of pharmacology, 2012, Volume: 167, Issue:3

    Elevating levels of endocannabinoids with inhibitors of fatty acid amide hydrolase (FAAH) is a major focus of pain research, purported to be a safer approach devoid of cannabinoid receptor-mediated side effects. Here, we have determined the effects of sustained pharmacological inhibition of FAAH on inflammatory pain behaviour and if pharmacological inhibition of FAAH was as effective as genetic deletion of FAAH on pain behaviour.. Effects of pre-treatment with a single dose, versus 4 day repeated dosing with the selective FAAH inhibitor, URB597 (i.p. 0.3 mg·kg⁻¹), on carrageenan-induced inflammatory pain behaviour and spinal pro-inflammatory gene induction were determined in rats. Effects of pain induction and of the drug treatments on levels of arachidonoyl ethanolamide (AEA), palmitoyl ethanolamide (PEA) and oleolyl ethanolamide (OEA) in the spinal cord were determined.. Single, but not repeated, URB597 treatment significantly attenuated the development of inflammatory hyperalgesia (P < 0.001, vs. vehicle-treated animals). Neither mode of URB597 treatment altered levels of AEA, PEA and OEA in the hind paw, or carrageenan-induced paw oedema. Single URB597 treatment produced larger increases in AEA, PEA and OEA in the spinal cord, compared with those after repeated administration. Single and repeated URB597 treatment decreased levels of immunoreactive N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) in the spinal cord and attenuated carrageenan-induced spinal pro-inflammatory gene induction.. Changes in the endocannabinoid system may contribute to the loss of analgesic effects following repeated administration of low dose URB597 in this model of inflammatory pain.

    Topics: Amides; Amidohydrolases; Animals; Arachidonic Acids; Behavior, Animal; Benzamides; Carbamates; Disease Models, Animal; Drug Administration Schedule; Endocannabinoids; Ethanolamines; Inflammation; Male; Oleic Acids; Pain; Palmitic Acids; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Spinal Cord

2012
A FAAH-fetched approach to treat osteoarthritis pain.
    Pain, 2011, Volume: 152, Issue:5

    Topics: Amidohydrolases; Animals; Benzamides; Carbamates; Enzyme Inhibitors; Osteoarthritis; Pain

2011
Biochemical and biological properties of 4-(3-phenyl-[1,2,4] thiadiazol-5-yl)-piperazine-1-carboxylic acid phenylamide, a mechanism-based inhibitor of fatty acid amide hydrolase.
    Anesthesia and analgesia, 2009, Volume: 108, Issue:1

    Fatty acid amide hydrolase (FAAH) is an integral membrane enzyme within the amidase-signature family. It catalyzes the hydrolysis of several endogenous biologically active lipids, including anandamide (arachidonoyl ethanolamide), oleoyl ethanolamide, and palmitoyl ethanolamide. These endogenous FAAH substrates have been shown to be involved in a variety of physiological and pathological processes, including synaptic regulation, regulation of sleep and feeding, locomotor activity, pain and inflammation. Here we describe the biochemical and biological properties of a potent and selective FAAH inhibitor, 4-(3-phenyl-[1,2,4]thiadiazol-5-yl)-piperazine-1-carboxylic acid phenylamide (JNJ-1661010). The time-dependence of apparent IC(50) values at rat and human recombinant FAAH, dialysis and mass spectrometry data indicate that the acyl piperazinyl fragment of JNJ-1661010 forms a covalent bond with the enzyme. This bond is slowly hydrolyzed, with release of the piperazinyl fragment and recovery of enzyme activity. The lack of inhibition observed in a rat liver esterase assay suggests that JNJ-1661010 is not a general esterase inhibitor. JNJ-1661010 is >100-fold preferentially selective for FAAH-1 when compared to FAAH-2. JNJ-1661010 dose-dependently increases arachidonoyl ethanolamide, oleoyl ethanolamide, and palmitoyl ethanolamide in the rat brain. The compound attenuates tactile allodynia in the rat mild thermal injury model of acute tissue damage and in the rat spinal nerve ligation (Chung) model of neuropathic pain. JNJ-1661010 also diminishes thermal hyperalgesia in the inflammatory rat carrageenan paw model. These data suggest that FAAH inhibitors with modes of action similar to JNJ-1661010 may be useful clinically as broad-spectrum analgesics.

    Topics: Amides; Amidohydrolases; Analgesics; Animals; Arachidonic Acids; Brain; Carrageenan; Disease Models, Animal; Dose-Response Relationship, Drug; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Hot Temperature; Humans; Hydrolysis; Isoenzymes; Kinetics; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Neuralgia; Oleic Acids; Pain; Pain Measurement; Pain Threshold; Palmitic Acids; Piperazines; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Reaction Time; Recombinant Proteins; Thiadiazoles

2009
Discovery and characterization of a highly selective FAAH inhibitor that reduces inflammatory pain.
    Chemistry & biology, 2009, Apr-24, Volume: 16, Issue:4

    Endocannabinoids are lipid signaling molecules that regulate a wide range of mammalian behaviors, including pain, inflammation, and cognitive/emotional state. The endocannabinoid anandamide is principally degraded by the integral membrane enzyme fatty acid amide hydrolase (FAAH), and there is currently much interest in developing FAAH inhibitors to augment endocannabinoid signaling in vivo. Here, we report the discovery and detailed characterization of a highly efficacious and selective FAAH inhibitor, PF-3845. Mechanistic and structural studies confirm that PF-3845 is a covalent inhibitor that carbamylates FAAH's serine nucleophile. PF-3845 selectively inhibits FAAH in vivo, as determined by activity-based protein profiling; raises brain anandamide levels for up to 24 hr; and produces significant cannabinoid receptor-dependent reductions in inflammatory pain. These data thus designate PF-3845 as a valuable pharmacological tool for in vivo characterization of the endocannabinoid system.

    Topics: Amidohydrolases; Animals; Arachidonic Acids; Brain; Crystallography, X-Ray; Endocannabinoids; Enzyme Inhibitors; Humans; Male; Pain; Piperazine; Piperazines; Piperidines; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Receptors, Cannabinoid; Structure-Activity Relationship; Urea

2009
Synergy between enzyme inhibitors of fatty acid amide hydrolase and cyclooxygenase in visceral nociception.
    The Journal of pharmacology and experimental therapeutics, 2009, Volume: 329, Issue:1

    The present study investigated whether inhibition of fatty acid amide hydrolase (FAAH), the enzyme responsible for anandamide catabolism, produces antinociception in the acetic acid-induced abdominal stretching model of visceral nociception. Genetic deletion or pharmacological inhibition of FAAH reduced acetic acid-induced abdominal stretching. Transgenic mice that express FAAH exclusively in the nervous system displayed the antinociceptive phenotype, indicating the involvement of peripheral fatty acid amides. The cannabinoid receptor 1 (CB(1)) receptor antagonist, rimonabant, but not the cannabinoid receptor 2 (CB(2)) receptor antagonist, SR144528, blocked the antinociceptive phenotype of FAAH(-/-) mice and the analgesic effects of URB597 (3'-carbamoyl-biphenyl-3-yl-cyclohexylcarbamate) or OL-135 (1-oxo-1[5-(2-pyridyl)-2-yl]-7-phenyl heptane), respective irreversible and reversible FAAH inhibitors, administered to C57BL/6 mice. The opioid receptor antagonist, naltrexone, did not block the analgesic effects of either FAAH inhibitor. URB597, ED(50) [95% confidence interval (CI) = 2.1 (1.5-2.9) mg/kg], and the nonselective cyclooxygenase inhibitor, diclofenac sodium [ED(50) (95% CI) = 9.8 (8.2-11.7) mg/kg], dose-dependently inhibited acetic acid-induced abdominal stretching. Combinations of URB597 and diclofenac yielded synergistic analgesic interactions according to isobolographic analysis. It is important that FAAH(-/-) mice and URB597-treated mice displayed significant reductions in the severity of gastric irritation caused by diclofenac. URB597 lost its gastroprotective effects in CB(1)(-/-) mice, whereas it maintained its efficacy in CB(2)(-/-) mice, indicating a CB(1) mechanism of action. Taken together, the results of the present study suggest that FAAH represents a promising target for the treatment of visceral pain, and a combination of FAAH inhibitors and NSAIDs may have great utility to treat visceral pain, with reduced gastric toxicity.

    Topics: Acetic Acid; Amidohydrolases; Animals; Benzamides; Carbamates; Cyclooxygenase Inhibitors; Diclofenac; Dose-Response Relationship, Drug; Drug Synergism; Enzyme Inhibitors; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Naltrexone; Narcotic Antagonists; Nociceptors; Pain; Protective Agents; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Stomach Ulcer

2009
Blockade of endocannabinoid-degrading enzymes attenuates neuropathic pain.
    The Journal of pharmacology and experimental therapeutics, 2009, Volume: 330, Issue:3

    Direct-acting cannabinoid receptor agonists are well known to reduce hyperalgesic responses and allodynia after nerve injury, although their psychoactive side effects have damped enthusiasm for their therapeutic development. Alternatively, inhibiting fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), the principal enzymes responsible for the degradation of the respective endogenous cannabinoids, anandamide (AEA) and 2-arachydonylglycerol (2-AG), reduce nociception in a variety of nociceptive assays, with no or minimal behavioral effects. In the present study we tested whether inhibition of these enzymes attenuates mechanical allodynia, and acetone-induced cold allodynia in mice subjected to chronic constriction injury of the sciatic nerve. Acute administration of the irreversible FAAH inhibitor, cyclohexylcarbamic acid 3'-carbamoylbiphenyl-3-yl ester (URB597), or the reversible FAAH inhibitor, 1-oxo-1-[5-(2-pyridyl)-2-yl]-7-phenylheptane (OL-135), decreased allodynia in both tests. This attenuation was completely blocked by pretreatment with either CB(1) or CB(2) receptor antagonists, but not by the TRPV1 receptor antagonist, capsazepine, or the opioid receptor antagonist, naltrexone. The novel MAGL inhibitor, 4-nitrophenyl 4-(dibenzo[d][1,3]dioxol-5-yl(hydroxy)methyl)piperidine-1-carboxylate (JZL184) also attenuated mechanical and cold allodynia via a CB(1), but not a CB(2), receptor mechanism of action. Whereas URB597 did not elicit antiallodynic effects in FAAH(-/-) mice, the effects of JZL184 were FAAH-independent. Finally, URB597 increased brain and spinal cord AEA levels, whereas JZL184 increased 2-AG levels in these tissues, but no differences in either endo-cannabinoid were found between nerve-injured and control mice. These data indicate that inhibition of FAAH and MAGL reduces neuropathic pain through distinct receptor mechanisms of action and present viable targets for the development of analgesic therapeutics.

    Topics: Amidohydrolases; Analgesics, Non-Narcotic; Animals; Arachidonic Acids; Benzamides; Benzodioxoles; Cannabinoid Receptor Modulators; Carbamates; Cold Temperature; Endocannabinoids; Enzyme Inhibitors; Glycerides; Hyperalgesia; Male; Mice; Mice, Inbred C57BL; Monoacylglycerol Lipases; Narcotic Antagonists; Pain; Pain Measurement; Peripheral Nervous System Diseases; Piperidines; Polyunsaturated Alkamides; Pyridines; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; TRPV Cation Channels

2009
Effects of URB597 as an inhibitor of fatty acid amide hydrolase on modulation of nociception in a rat model of cholestasis.
    European journal of pharmacology, 2008, Sep-04, Volume: 591, Issue:1-3

    Cholestasis is associated with increased activity of the endogenous opioid system that results in analgesia. Endocannabinoid system can reduce pain sensitivity. The use of inhibitors of endocannabinoid metabolism is a novel means of pharmacologically increasing endocannabinoid levels. Considering the interaction that has been shown between the endogenous opioid and endocannabinoid systems in nociception processing, we studied the effects of URB597, a selective inhibitor of FAAH (fatty acid amide hydrolase), on modulation of nociception in a model of elevated endogenous opioid tone, cholestasis. Cholestasis was induced by ligation of the main bile duct using two ligatures and then transection of the duct at the midpoint between them. Seven days after surgery, tail-flick latencies were measured at 60 min after drug administration. A significant increase (P<0.001) in nociception threshold was observed in cholestatic rats compared to unoperated and sham groups. Administration of URB597 (0.3 mg/kg, i.p.) in cholestatic animals significantly (P<0.001) increased tail-flick latency compared to the vehicle treated cholestatic group. URB597 injection to unoperated and sham groups caused a significant (P<0.05, P<0.05) increase in tail-flick latency compared to their respective vehicle treated groups. The antinociceptive effect of URB597 was blocked by coadministration of a cannabinoid CB(1) receptor antagonist, AM251 (1 mg/kg, i.p.) but not by a cannabinoid CB(2) receptor antagonist, SR144528 (1 mg/kg, i.p.) with URB597. These data showed that URB597 as a FAAH inhibitor potentiates antinociception induced by cholestasis in tail-flick test and that the inhibitory effects of URB597 in this model are mediated by cannabinoid CB(1) and not CB(2) receptors.

    Topics: Amidohydrolases; Animals; Benzamides; Carbamates; Cholestasis; Disease Models, Animal; Injections, Intraperitoneal; Male; Pain; Pain Measurement; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2

2008
Inhibition of fatty acid amide hydrolase produces PPAR-alpha-mediated analgesia in a rat model of inflammatory pain.
    British journal of pharmacology, 2008, Volume: 155, Issue:8

    We have previously demonstrated antinociceptive effects of fatty acid amide hydrolase (FAAH) inhibition that were accompanied by increases in the levels of endocannabinoids (ECs) in the hind paw. Here, the effects of the FAAH inhibitor URB597 (3'-carbamoyl-biphenyl-3-yl-cyclohexylcarbamate) on responses of spinal neurons were studied.. Extracellular single-unit recordings of dorsal horn neurons were made in anaesthetized rats with hind paw inflammation induced by lambda-carrageenan. Effects of intraplantar pre-administration of URB597, or vehicle, on carrageenan-evoked expansion of peripheral receptive fields of spinal neurons and mechanically evoked responses of neurons were studied. The cannabinoid receptor type 1 (CB(1)) antagonist AM251 (N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide) and the peroxisome proliferator-activated receptor (PPAR)-alpha antagonist GW6471 ([(2S)-2-[[(1Z)-1-methyl-3-oxo-3-[4-(trifluoromethyl)phenyl]-1-propenyl]amino]-3-[4-[2-(5-methyl-2-phenyl-4-oxa zolyl)ethoxy]phenyl]propyl]-carbamic acid ethyl ester) were used to investigate the roles of these receptors in mediating the effects of URB597.. URB597 (25 microg in 50 microL) pretreatment significantly inhibited carrageenan-evoked receptive field expansion and this was significantly reversed by co-administration of the PPAR-alpha antagonist but not the CB(1) antagonist. Pretreatment with the PPAR-alpha receptor agonist WY14643 ([[4-chloro-6-[(2,3-dimethylphenyl)amino]-2-pyrimidinyl]thio]acetic acid) also significantly inhibited receptive field expansion. URB597 (25 or 100 microg in 50 microL) had no significant effect on mechanically evoked responses of spinal neurons.. URB597 inhibited receptive field expansions but not mechanically evoked responses of spinal neurons in rats with hind paw inflammation. These effects were blocked by PPAR-alpha receptor antagonism. These data support the contention that URB597 exerts its antinociceptive effects by indirect inhibition of sensitization of neuronal responses at least partly through PPAR-alpha activation due to enhanced EC levels.

    Topics: Amidohydrolases; Analgesia; Animals; Benzamides; Carbamates; Carrageenan; Disease Models, Animal; Inflammation; Oxazoles; Pain; Piperidines; PPAR gamma; Pyrazoles; Rats; Receptor, Cannabinoid, CB1; Tyrosine

2008
Modulation of opioids via protection of anandamide degradation by fatty acid amide hydrolase.
    European journal of pharmacology, 2008, Dec-14, Volume: 600, Issue:1-3

    Lack of involvement of the opioid system with the endocannabinoid, arachidonylethanolamide (anandamide) was possibly due to hydrolysis by fatty acid amide hydrolase (FAAH). Cyclohexylcarbamic acid 3'-carbamoyl-biphenyl-3-yl ester (URB597) is an inhibitor of FAAH, increases brain anandamide levels and enhances anandamide-induced antinociception in male ICR mice (25-30 g). The combination of URB597 (10 mg/kg, i.p.) and anandamide (40 mg/kg, i.p.) produced maximal antinociception in the mouse tail-flick test [68.7+/-16.8 percent maximum possible effect (%MPE)], versus either substance alone (27.3+/-7.9%MPE and 4.6+/-2.3%MPE, respectively) and is significantly blocked (p<0.05) by the cannabinoid CB(1) receptor antagonist, SR141716A (rimonabant), the kappa opioid receptor-selective antagonist, nor-Binaltorphimine (10 microg i.t.; 12.7+/-4.0%MPE) and the mu opioid receptor antagonist, naloxone (1 mg/kg, s.c.; 6.0+/-3.8%MPE), but not by the delta opioid receptor-selective antagonist, naltrindole (2 mg/kg, s.c.; 29.7+/-8.2%MPE) or the cannabinoid CB(2) receptor antagonist, SR144528. In addition, nor-BNI (10 microg i.t) administration to FAAH(-/-) knockout mice produced a nociceptive response. The URB597/anandamide combination was not active in the CB(1)(-/-) knockout mice, but retained activity in the MOR(-/-) knockout mice. The sub-active combination of (URB597 10 mg/kg, i.p/anandamide 10 mg/kg, i.p.; 15.5+/-4.3%MPE) shifted the dose response curve of morphine to the left (morphine alone ED(50)=4.6 mg/kg [3.7-5.6] versus morphine/URB597/anandamide (ED(50)=2.5 mg/kg [1.9-3.4]). These data are the first demonstration that anandamide, if protected from degradation, acts via the CB(1) receptor to interact with kappa opioid receptor systems in opioid analgesia.

    Topics: Amidohydrolases; Analgesics, Opioid; Animals; Arachidonic Acids; Benzamides; Cannabinoid Receptor Modulators; Carbamates; Dose-Response Relationship, Drug; Drug Therapy, Combination; Endocannabinoids; Enzyme Inhibitors; Male; Mice; Mice, Inbred ICR; Mice, Knockout; Morphine; Pain; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1; Receptors, Opioid, kappa

2008
Endocannabinoid-mediated enhancement of fear-conditioned analgesia in rats: opioid receptor dependency and molecular correlates.
    Pain, 2008, Volume: 140, Issue:3

    The opioid and endocannabinoid systems mediate analgesia expressed upon re-exposure to a contextually aversive stimulus (fear-conditioned analgesia; FCA), and modulate the mitogen-activated protein kinase (MAPK) pathway. However, an interaction between the opioid and endocannabinoid systems during FCA has not been investigated at the behavioural or molecular level. FCA was modeled in male Lister-hooded rats by assessing formalin-evoked nociceptive behaviour in an arena previously paired with footshock. Administration of the fatty acid amide hydrolase and endocannabinoid catabolism inhibitor, URB597 (0.3 mg/kg, i.p.), enhanced expression of FCA. The opioid receptor antagonist, naloxone, attenuated FCA and attenuated the URB597-induced enhancement of FCA. SR141716A (CB(1) antagonist) and SR144528 (CB(2) antagonist) also attenuated the URB597-mediated enhancement of FCA. Expression of FCA was associated with increased relative phospho-ERK2 expression in the amygdala, an effect blocked by naloxone, SR141716A, and SR144528. Furthermore, URB597-mediated enhancement of FCA was associated with reduced phospho-ERK1 and phospho-ERK2 in the amygdala. Phospho-ERK1/2 expression in the hippocampus, prefrontal cortex, and thalamus was unchanged following FCA and drug treatment. None of the drugs affected formalin-evoked nociceptive behaviour or phospho-ERK1/2 expression in non-fear-conditioned rats. These data suggest that endocannabinoid-mediated enhancement of FCA is abolished by pharmacological blockade of opioid receptors as well as CB(1) or CB(2) receptors. Both pharmacological enhancement (with URB597) and attenuation (with naloxone) of this form of endogenous analgesia were associated with reduced expression of phospho-ERK1/2 in the amygdaloid complex arguing against a causal role for ERK1/2 signaling in the amygdala during expression of FCA or its modulation by opioids or cannabinoids.

    Topics: Amidohydrolases; Amygdala; Analgesia; Animals; Arachidonic Acids; Avoidance Learning; Benzamides; Cannabinoid Receptor Modulators; Carbamates; Conditioning, Psychological; Endocannabinoids; Enzyme Inhibitors; Extracellular Signal-Regulated MAP Kinases; Fear; Male; Narcotic Antagonists; Neural Inhibition; Pain; Pain Measurement; Polyunsaturated Alkamides; Rats; Receptor, Cannabinoid, CB1; Receptors, Opioid; Signal Transduction

2008
Elevation of endocannabinoid levels in the ventrolateral periaqueductal grey through inhibition of fatty acid amide hydrolase affects descending nociceptive pathways via both cannabinoid receptor type 1 and transient receptor potential vanilloid type-1 re
    The Journal of pharmacology and experimental therapeutics, 2006, Volume: 316, Issue:3

    In the ventrolateral periaqueductal gray (PAG), activation of excitatory output neurons projecting monosynaptically to OFF cells in the rostral ventromedial medulla (RVM) causes antinociceptive responses and is under the control of cannabinoid receptor type-1 (CB1) and vanilloid transient receptor potential vanilloid type 1 (TRPV1) receptors. We studied in healthy rats the effect of elevation of PAG endocannabinoid [anandamide and 2-arachidonoylglycerol (2-AG)] levels produced by intra-PAG injections of the inhibitor of fatty acid amide hydrolase URB597 [cyclohexylcarbamic acid-3'-carbamoyl-biphenyl-3-yl ester] on 1) nociception in the "plantar test" and 2) spontaneous and tail-flick-related activities of RVM neurons. Depending on the dose or time elapsed since administration, URB597 (0.5-2.5 nmol/rat) either suppressed or increased thermal nociception via TRPV1 or CB1 receptors, respectively. TRPV1 or cannabinoid receptor agonists capsaicin (6 nmol) and (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3,-de]-1,4-benzoxazin-6-yl]-1-naphthalenylmethanone mesylate [WIN55,212-2 (4 nmol)] also suppressed or enhanced nociception, respectively. URB597 dose dependently enhanced PAG anandamide and 2-AG levels, with probable subsequent activation of TRPV1/CB1 receptors and only CB1 receptors, respectively. The TRPV1-mediated antinociception and CB1-mediated nociception caused by URB597 correlated with enhanced or reduced activity of RVM OFF cells, suggesting that these effects occur via stimulation or inhibition of excitatory PAG output neurons, respectively. Accordingly, several ventrolateral PAG neurons were found by immunohistochemistry to coexpress TRPV1 and CB1 receptors. Finally, at the highest doses tested, URB597 (4 nmol/rat) and, as previously reported, WIN55,212-2 (25-100 nmol) also caused CB(1)-mediated analgesia, correlating with stimulation (possibly disinhibition) of RVM OFF cells. Thus, endocannabinoids affect the descending pathways of pain control by acting at either CB1 or TRPV1 receptors in healthy rats.

    Topics: Amidohydrolases; Analgesia; Animals; Benzamides; Benzoxazines; Cannabinoid Receptor Modulators; Carbamates; Endocannabinoids; Immunohistochemistry; Male; Medulla Oblongata; Morpholines; Naphthalenes; Pain; Periaqueductal Gray; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; TRPV Cation Channels

2006
Actions of the FAAH inhibitor URB597 in neuropathic and inflammatory chronic pain models.
    British journal of pharmacology, 2006, Volume: 147, Issue:3

    While cannabinoid receptor agonists have analgesic activity in chronic pain states, they produce a spectrum of central CB(1) receptor-mediated motor and psychotropic side effects. The actions of endocannabinoids, such as anandamide are terminated by removal from the extracellular space, then subsequent enzymatic degradation by fatty-acid amide hydrolase (FAAH). In the present study, we compared the effect of a selective FAAH inhibitor, URB597, to that of a pan-cannabinoid receptor agonist HU210 in rat models of chronic inflammatory and neuropathic pain. Systemic administration of URB597 (0.3 mg kg(-1)) and HU210 (0.03 mg kg(-1)) both reduced the mechanical allodynia and thermal hyperalgesia in the CFA model of inflammatory pain. In contrast, HU210, but not URB597, reduced mechanical allodynia in the partial sciatic nerve-ligation model of neuropathic pain. HU210, but not URB597, produced a reduction in motor performance in unoperated rats. The effects of URB597 in the CFA model were dose dependent and were reduced by coadministration with the cannabinoid CB1 antagonist AM251 (1 mg kg(-1)), or the CB2 and SR144528 (1 mg kg(-1)). Coadministration with AM251 plus SR144528 completely reversed the effects of URB597. These findings suggest that the FAAH inhibitor URB597 produces cannabinoid CB1 and CB2 receptor-mediated analgesia in inflammatory pain states, without causing the undesirable side effects associated with cannabinoid receptor activation.

    Topics: Amidohydrolases; Animals; Benzamides; Carbamates; Chronic Disease; Disease Models, Animal; Enzyme Inhibitors; Hyperalgesia; Inflammation; Male; Motor Activity; Neuralgia; Pain; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; TRPV Cation Channels

2006
Role of the basolateral nucleus of the amygdala in endocannabinoid-mediated stress-induced analgesia.
    Neuroscience letters, 2006, Apr-24, Volume: 397, Issue:3

    Recent work in our laboratories has demonstrated that an opioid-independent form of stress-induced analgesia (SIA) is mediated by endogenous ligands for cannabinoid receptors-anandamide and 2-arachidonoylglycerol (2-AG) [A.G. Hohmann, R.L. Suplita, N.M. Bolton, M.H. Neely, D. Fegley, R. Mangieri, J.F. Krey, J.M. Walker, P.V. Holmes, J.D. Crystal, A. Duranti, A. Tontini, M. Mor, G. Tarzia, D. Piomelli, An endocannabinoid mechanism for stress-induced analgesia, Nature 435 (2005) 1108-1112]. The present study was conducted to examine the contribution of cannabinoid CB1 receptors in the basolateral nucleus of the amygdala (BLA) and central nucleus of the amygdala (CeA) to nonopioid SIA. SIA was induced by continuous footshock (3 min 0.9 mA) and quantified behaviorally using the tail-flick test. Microinjection of the CB1 antagonist/inverse agonist rimonabant (SR141716A) into the BLA, a limbic forebrain region with high densities of CB1 receptors, suppressed SIA relative to control conditions. By contrast, the same dose administered into the CeA, where CB1 immunoreactivity is largely absent, or outside the amygdala did not alter SIA. To examine the contribution of endocannabinoids in the BLA to SIA, we used selective pharmacological inhibitors of the anandamide-degrading enzyme fatty-acid amide hydrolase (FAAH) and the 2-arachidonoylglycerol-degrading enzyme monoacylglycerol lipase (MGL). The FAAH inhibitor URB597 and MGL inhibitor URB602, at doses that enhanced SIA following microinjection in the midbrain periaqueductal gray, did not alter SIA relative to control conditions. Our findings suggest that CB1 receptors in the BLA but not the CeA contribute to SIA, but pharmacological inhibition of endocannabinoid degradation at these sites does not affect the expression of stress antinociception.

    Topics: Amidohydrolases; Amygdala; Animals; Benzamides; Biphenyl Compounds; Cannabinoid Receptor Modulators; Carbamates; Endocannabinoids; Male; Microinjections; Monoacylglycerol Lipases; Pain; Piperidines; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Rimonabant; Stress, Psychological

2006
Non-cannabinoid CB1, non-cannabinoid CB2 antinociceptive effects of several novel compounds in the PPQ stretch test in mice.
    European journal of pharmacology, 2006, Sep-28, Volume: 546, Issue:1-3

    The analgesic and anti-hyperalgesic effects of cannabinoid- and vanilloid-like compounds, plus the fatty acid amide hydrolase (FAAH) inhibitor Cyclohexylcarbamic acid 3'-carbamoyl-biphenyl-3-yl ester (URB597), and acetaminophen, were evaluated in the phenyl-p-quinone (PPQ) pain model, using different routes of administration in combination with opioid and cannabinoid receptor antagonists. All the compounds tested produced analgesic effects. Delta(9)-tetrahydrocannabinol (Delta(9)-THC) and (R)-(+)-arachidonyl-1'-hydroxy-2'-propylamide ((R)-methanandamide) were active by three routes of administration: i.p., s.c. and, p.o. Delta(9)-THC produced ED(50)s of 2.2 mg/kg (0.3-15.6) i.p., 9 mg/kg (4.3-18.9) s.c., and 6.4 mg/kg (5.5-7.6) p.o. Similarly, (R)-methanandamide yielded ED(50)s of 2.9 mg/kg (1-8) i.p., 11 mg/kg (7-17) s.c., and 11 mg/kg (0.9-134) p.o. N-vanillyl-arachidonyl-amide (arvanil) was active by two routes, producing ED(50)s of 4.7 mg/kg (3.0-7.4) s.c. and 0.06 mg/kg (0.02-0.2) i.p. Palmitoylethanolamide, URB597, and acetaminophen were active i.p., resulting in ED(50)s of 3.7 mg/kg (3.2-4.2), 22.9 mg/kg (11.1-47.2), and 160 mg/kg (63-405), respectively. None of the cannabinoid or opioid receptor antagonists tested blocked the compounds evaluated, with two exceptions: the antinociceptive effects of Delta(9)-THC and URB597 were completely blocked by SR141716A, a cannabinoid CB(1) receptor antagonist. Western immunoassays performed using three opioid receptor antibodies, a cannabinoid CB(1) receptor antibody and a transient receptor potential vanilloid type 1(TRPV(1)) receptor antibody, yielded no change in receptor protein levels after short-term arvanil, (R)-methanandamide or Delta(9)-THC administration. These data suggest that all the compounds tested, except Delta(9)-THC and URB597, produced analgesia via a non-cannabinoid CB(1), non-cannabinoid CB(2) pain pathway not yet identified.

    Topics: Acetaminophen; Amides; Analgesics; Animals; Arachidonic Acids; Benzamides; Benzoquinones; Camphanes; Capsaicin; Carbamates; Dose-Response Relationship, Drug; Dronabinol; Endocannabinoids; Ethanolamines; Hyperalgesia; Male; Mesencephalon; Mice; Mice, Inbred ICR; Narcotic Antagonists; Pain; Palmitic Acids; Piperidines; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Receptors, Opioid; Rimonabant; Spinal Cord; TRPV Cation Channels

2006
Analgesic effects of fatty acid amide hydrolase inhibition in a rat model of neuropathic pain.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2006, Dec-20, Volume: 26, Issue:51

    Cannabinoid-based medicines have therapeutic potential for the treatment of pain. Augmentation of levels of endocannabinoids with inhibitors of fatty acid amide hydrolase (FAAH) is analgesic in models of acute and inflammatory pain states. The aim of this study was to determine whether local inhibition of FAAH alters nociceptive responses of spinal neurons in the spinal nerve ligation model of neuropathic pain. Electrophysiological studies were performed 14-18 d after spinal nerve ligation or sham surgery, and the effects of the FAAH inhibitor cyclohexylcarbamic acid 3-carbamoyl biphenyl-3-yl ester (URB597) on mechanically evoked responses of spinal neurons and levels of endocannabinoids were determined. Intraplantar URB597 (25 microg in 50 microl) significantly (p < 0.01) attenuated mechanically evoked responses of spinal neurons in sham-operated rats. Effects of URB597 were blocked by the cannabinoid 1 receptor (CB1) antagonist AM251 [N-1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide] (30 microg in 50 microl) and the opioid receptor antagonist naloxone. URB597 treatment increased levels of anandamide, 2-arachidonyl glycerol, and oleoyl ethanolamide in the ipsilateral hindpaw of sham-operated rats. Intraplantar URB597 (25 microg in 50 microl) did not, however, alter mechanically evoked responses of spinal neurons in spinal nerve ligated (SNL) rats or hindpaw levels of endocannabinoids. Intraplantar injection of a higher dose of URB597 (100 microg in 50 microl) significantly (p < 0.05) attenuated evoked responses of spinal neurons in SNL rats but did not alter hindpaw levels of endocannabinoids. Spinal administration of URB597 attenuated evoked responses of spinal neurons and elevated levels of endocannabinoids in sham-operated and SNL rats. These data suggest that peripheral FAAH activity may be altered or that alternative pathways of metabolism have greater importance in SNL rats.

    Topics: Amidohydrolases; Analgesics; Animals; Benzamides; Carbamates; Disease Models, Animal; Enzyme Inhibitors; Injections, Spinal; Male; Pain; Pain Measurement; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1

2006