urb-597 and Disease-Models--Animal

urb-597 has been researched along with Disease-Models--Animal* in 86 studies

Other Studies

86 other study(ies) available for urb-597 and Disease-Models--Animal

ArticleYear
The effect of URB597, exercise or their combination on the performance of 6-OHDA mouse model of Parkinson disease in the elevated plus maze, tail suspension test and step-down task.
    Metabolic brain disease, 2021, Volume: 36, Issue:8

    Parkinson disease (PD) is a progressive neurodegenerative disorder that is often accompanied by motor and psychiatric symptoms. Various approaches have been proposed for the treatment of PD. Here, we investigated the effect of a low dose of fatty acid amide hydrolase inhibitor URB597 (as an enhancer of endocannabinoid anandamide levels), exercise or their combination on some behavior alterations in PD mice lesioned by 6-hydroxydopamine (6-OHDA). The impact of swimming exercise (5×/week for 4 weeks) and URB597 (0.1 mg/kg, 2×/week for 4 weeks) on the anxiety-related behavior (elevated plus maze; EPM), depression-related behavior (tail suspension test; TST), and passive avoidance memory (step-down task) was examined in the sham and male NMRI mouse of PD model. The results show that URB597 prevented memory deficits and elicited antidepressant- and anxiolytic-like effects but did not affect hypolocomotion in the PD mice. However, URB597 did not have a significant effect on the performance of the sham mice in the performed tests. Moreover, swimming training abolished depressive- and anxiogenic-like behaviors and increased locomotion without affecting memory deficits in the PD mice. Meanwhile, swimming decreased immobility time and increased locomotion in the sham mice. Furthermore, URB597 in association with swimming training prevented all deficits induced in the PD mice, while this combination impaired memory and produced the positive effects on depression- and anxiety-related behaviors and locomotion of the sham mice. It is concluded that although URB597 or exercise alone had positive effects on most behavioral tests, their combination improved all parameters in the PD mice.

    Topics: Animals; Behavior, Animal; Benzamides; Carbamates; Disease Models, Animal; Elevated Plus Maze Test; Hindlimb Suspension; Male; Mice; Mice, Inbred Strains; Oxidopamine; Parkinson Disease

2021
Intravenous doxapram administration as a potential model of panic attacks in rats.
    Behavioural pharmacology, 2021, 04-01, Volume: 32, Issue:2&3

    Panic disorder can be categorized into the nonrespiratory or the respiratory subtypes, the latter comprising dyspnea, shortness of breath, chest pain, feelings of suffocation, and paresthesias. Doxapram is an analeptic capable of inducing panic attacks with respiratory symptoms in individuals diagnosed with the disorder; however, its neuroanatomical targets and its effects on experimental animals remain uncharacterized. One of the brain regions proposed to trigger panic attacks is the midbrain periaqueductal gray (PAG). Therefore, in this study, we evaluated the effects of doxapram in Fos (c-Fos) protein expression in the PAG and characterized its cardiorespiratory and behavioral effects on the elevated T maze and in the conditioned place aversion (CPA) paradigms. Doxapram increased Fos expression in different columns of the PAG, increased respiratory frequency, decreased heart rate, and increased arterial pressure when injected via intravenous route. Alprazolam, a panicolytic benzodiazepine, injected via intraperitoneal route, decreased respiratory frequency, whereas URB597, an anandamide hydrolysis inhibitor injected via intraperitoneal route, was ineffective. Doxapram injected via intraperitoneal route induced an anxiogenic-like effect in the elevated T-maze model; however, it failed to induce CPA. This study suggests that the cardiorespiratory and behavioral effects of doxapram in rodents serve as an experimental model that can provide insights into the neurobiology of panic attacks.

    Topics: Administration, Intravenous; Alprazolam; Animals; Benzamides; Carbamates; Central Nervous System Stimulants; Disease Models, Animal; Doxapram; Male; Maze Learning; Panic Disorder; Periaqueductal Gray; Proto-Oncogene Proteins c-fos; Rats; Rats, Wistar

2021
URB597 abrogates anxiogenic and depressive behaviors in the methamphetamine-withdrawal mice: Role of the cannabinoid receptor type 1, cannabinoid receptor type 2, and transient receptor potential vanilloid 1 channels.
    Journal of psychopharmacology (Oxford, England), 2021, Volume: 35, Issue:7

    Methamphetamine is an addictive stimulant that possesses toxicity in the brain when taken repeatedly or at higher doses. Methamphetamine neurotoxicity is associated with numerous forms of mental impairment, including depression and anxiety. Evidence has also demonstrated that the endocannabinoid system is involved in the regulation of anxiety and depression.. This study was designed to determine the involvement of the endocannabinoid system in anxiety- and depression-related behaviors in methamphetamine-withdrawal male NMRI mice.. The elevated plus maze and forced swim test were used to assess the level of anxiety and depression.. We found that methamphetamine (30 mg/kg, intraperitoneal) evoked depressive- and anxiogenic-like effects at 3 days post-administration. Injection of URB597 (5-10 ng/mouse, intracerebroventricular), 10 min before the test, prevented the emotional deficits induced by methamphetamine withdrawal. Moreover, the cannabinoid receptor type 1 antagonist AM251 (1 μg/mouse) or cannabinoid receptor type 2 antagonist AM630 (5 and 10 μg/mouse) suppressed the antidepressant activity in the methamphetamine-withdrawal mice treated with URB597. The transient receptor potential vanilloid 1 antagonist capsazepine (25 μg/mouse) prevented while capsazepine (100 μg/mouse) potentiated the antidepressant efficacy in the methamphetamine-withdrawal mice treated with URB597. The higher dose of AM630 and two higher doses of capsazepine had antidepressant efficacy, by themselves. Furthermore, capsazepine (50 μg/mouse) increased locomotion in the methamphetamine-withdrawal mice treated with URB597.. The results suggest that URB597 has a potential for preventing methamphetamine withdrawal-evoked anxiety and depression. Cannabinoid type 1 receptors, cannabinoid type 2 receptors and transient receptor potential vanilloid 1 differently affect depression-related behaviors in methamphetamine-withdrawal mice treated with URB597.

    Topics: Amidohydrolases; Animals; Anxiety; Behavior, Animal; Benzamides; Cannabinoid Receptor Antagonists; Carbamates; Central Nervous System Stimulants; Depression; Disease Models, Animal; Endocannabinoids; Male; Methamphetamine; Mice; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Substance Withdrawal Syndrome; TRPV Cation Channels

2021
Fatty Acid Amide Hydrolase (FAAH) Inhibition Modulates Amyloid-Beta-Induced Microglia Polarization.
    International journal of molecular sciences, 2021, Jul-19, Volume: 22, Issue:14

    The ability of endocannabinoid (eCB) to change functional microglial phenotype can be explored as a possible target for therapeutic intervention. Since the inhibition of fatty acid amide hydrolase (FAAH), the main catabolic enzyme of anandamide (AEA), may provide beneficial effects in mice model of Alzheimer's disease (AD)-like pathology, we aimed at determining whether the FAAH inhibitor URB597 might target microglia polarization and alter the cytoskeleton reorganization induced by the amyloid-β peptide (Aβ). The morphological evaluation showed that Aβ treatment increased the surface area of BV-2 cells, which acquired a flat and polygonal morphology. URB597 treatment partially rescued the control phenotype of BV-2 cells when co-incubated with Aβ. Moreover, URB597 reduced both the increase of Rho protein activation in Aβ-treated BV-2 cells and the Aβ-induced migration of BV-2 cells, while an increase of Cdc42 protein activation was observed in all samples. URB597 also increased the number of BV-2 cells involved in phagocytosis. URB597 treatment induced the polarization of microglial cells towards an anti-inflammatory phenotype, as demonstrated by the decreased expression of iNOS and pro-inflammatory cytokines along with the parallel increase of Arg-1 and anti-inflammatory cytokines. Taken together, these data suggest that FAAH inhibition promotes cytoskeleton reorganization, regulates phagocytosis and cell migration processes, thus driving microglial polarization towards an anti-inflammatory phenotype.

    Topics: Alzheimer Disease; Amidohydrolases; Amyloid beta-Peptides; Animals; Arachidonic Acids; Benzamides; Carbamates; Cell Line; Cell Movement; Cell Polarity; Cytokines; Cytoskeleton; Disease Models, Animal; Endocannabinoids; Mice; Microglia; Polyunsaturated Alkamides

2021
Therapeutic candidates for the Zika virus identified by a high-throughput screen for Zika protease inhibitors.
    Proceedings of the National Academy of Sciences of the United States of America, 2020, 12-08, Volume: 117, Issue:49

    When Zika virus emerged as a public health emergency there were no drugs or vaccines approved for its prevention or treatment. We used a high-throughput screen for Zika virus protease inhibitors to identify several inhibitors of Zika virus infection. We expressed the NS2B-NS3 Zika virus protease and conducted a biochemical screen for small-molecule inhibitors. A quantitative structure-activity relationship model was employed to virtually screen ∼138,000 compounds, which increased the identification of active compounds, while decreasing screening time and resources. Candidate inhibitors were validated in several viral infection assays. Small molecules with favorable clinical profiles, especially the five-lipoxygenase-activating protein inhibitor, MK-591, inhibited the Zika virus protease and infection in neural stem cells. Members of the tetracycline family of antibiotics were more potent inhibitors of Zika virus infection than the protease, suggesting they may have multiple mechanisms of action. The most potent tetracycline, methacycline, reduced the amount of Zika virus present in the brain and the severity of Zika virus-induced motor deficits in an immunocompetent mouse model. As Food and Drug Administration-approved drugs, the tetracyclines could be quickly translated to the clinic. The compounds identified through our screening paradigm have the potential to be used as prophylactics for patients traveling to endemic regions or for the treatment of the neurological complications of Zika virus infection.

    Topics: Animals; Antiviral Agents; Artificial Intelligence; Chlorocebus aethiops; Disease Models, Animal; Drug Evaluation, Preclinical; High-Throughput Screening Assays; Immunocompetence; Inhibitory Concentration 50; Methacycline; Mice, Inbred C57BL; Protease Inhibitors; Quantitative Structure-Activity Relationship; Small Molecule Libraries; Vero Cells; Zika Virus; Zika Virus Infection

2020
Targeting the inhibition of fatty acid amide hydrolase ameliorate the endocannabinoid-mediated synaptic dysfunction in a valproic acid-induced rat model of Autism.
    Neuropharmacology, 2020, 01-01, Volume: 162

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder, characterized by social interaction impairment, stereotypical/repetitive behaviors and emotional deregulation. The endocannabinoid (eCB) system plays a crucial role in modulating the behavioral traits that are typically core symptoms of ASD. The major molecular mechanisms underlying eCB-dependent long-term depression (eCB-LTD) are mediated by group 1 metabotropic glutamate receptor (mGluR)-induced removal of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Recently, modulation of anandamide (AEA), one of the main endocannabinoids in the brain, has been reported to alter social behaviors in genetic models of ASD. On this basis, we investigated the effects of treatment and the synaptic mechanism underlying AEA-mediated signaling in prenatal exposure to valproic acid (VPA) in rats. We found that the social deficits, repetitive behaviors and abnormal emotion-related behaviors in VPA-exposed offspring were improved after treatment with an inhibitor of AEA degrading enzyme, URB597. Using an integrative approach combing electrophysiological and cellular mechanisms, the results showed that the impaired eCB-LTD, abnormal mGluR-mediated LTD (mGluR-LTD) and decreased removal of AMPAR subunits GluA1 and GluA2 were reversed by URB597 in the prefrontal cortex (PFC) of VPA-exposed offspring. Taken together, these results provide the first evidence that rescue of the ASD-like phenotype by URB597 is mediated by enhancing the mechanism of removal of AMPAR subunits GluA1/2 underlying AEA signaling in the PFC in a VPA-induced model of ASD.

    Topics: Amidohydrolases; Animals; Arachidonic Acids; Autism Spectrum Disorder; Benzamides; Carbamates; Disease Models, Animal; Endocannabinoids; Enzyme Inhibitors; Female; Long-Term Synaptic Depression; Neuronal Plasticity; Polyunsaturated Alkamides; Prefrontal Cortex; Pregnancy; Prenatal Exposure Delayed Effects; Protein Transport; Rats; Receptors, AMPA; Receptors, Metabotropic Glutamate; Social Behavior; Valproic Acid

2020
Neuropeptide Y and cannabinoids interaction in the amygdala after exposure to shock and reminders model of PTSD.
    Neuropharmacology, 2020, 01-01, Volume: 162

    Topics: Amygdala; Animals; Arachidonic Acids; Arousal; Basolateral Nuclear Complex; Behavior, Animal; Benzamides; Carbamates; Depression; Disease Models, Animal; Endocannabinoids; Extinction, Psychological; Neuropeptide Y; Polyunsaturated Alkamides; Rats; Receptor, Cannabinoid, CB1; Receptors, Neuropeptide Y; Reflex, Startle; Social Behavior; Stress Disorders, Post-Traumatic

2020
FAAH inhibition as a preventive treatment for migraine: A pre-clinical study.
    Neurobiology of disease, 2020, Volume: 134

    Fatty-acid amide hydrolase (FAAH) is an intracellular serine hydrolase that catalyzes the cleavage of endogenous fatty-acid amides, including the endocannabinoid anandamide (AEA). We previously reported that the peripherally restricted FAAH inhibitor URB937, which selectively increases AEA levels outside the central nervous system, reduces hyperalgesia and c-Fos expression in the trigeminal nucleus caudalis (TNC) and the locus coeruleus in an animal model of migraine based on nitroglycerin (NTG) administration.. To further investigate the relevance of FAAH inhibition in the NTG animal model of migraine by testing the effects of the globally active FAAH inhibitor URB597.. Our experimental approach involved mapping neuronal c-Fos protein expression, measurement of AEA levels in brain areas and in trigeminal ganglia, evaluation of pain-related behavior and quantification of molecular mediators in rats that received URB597 (2 mg/kg i.p.) either before or after NTG administration (10 mg/kg, i.p.).. Pre-treatment with URB597 significantly reduced c-Fos immunoreactivity in the TNC and inhibited NTG-induced hyperalgesia in the orofacial formalin test. This behavioral response was associated with a decrease in neuronal nitric oxide synthase, calcitonin gene-related peptide and cytokine gene expression levels in central and peripheral structures. Administration of URB597 after NTG had no such effect.. The findings suggest that global FAAH inhibition may offer a therapeutic approach to the prevention, but not the abortive treatment, of migraine attacks. Further studies are needed to elucidate the exact cellular and molecular mechanisms underlying the protective effects of FAAH inhibition.

    Topics: Amidohydrolases; Animals; Benzamides; Carbamates; Disease Models, Animal; Male; Migraine Disorders; Nitroglycerin; Rats; Rats, Sprague-Dawley; Trigeminal Caudal Nucleus; Vasodilator Agents

2020
Endocannabinoid modulating drugs improve anxiety but not the expression of conditioned fear in a rodent model of post-traumatic stress disorder.
    Neuropharmacology, 2020, Volume: 166

    The endocannabinoid (eCB) system is a potential target for the treatment of symptoms of post-traumatic stress disorder (PTSD). Similar to clinical PTSD, approximately 25-30% of rats that undergo cued fear conditioning exhibit impaired extinction learning. In addition to extinction-resistant fear, these "weak extinction" (WE) rats show persistent anxiety-like behaviors. The goal of the present study was to test the hypothesis that behavioural differences between WE animals and those presenting normal extinction patterns (strong extinction; SE) could be mediated by the eCB system. Rats undergoing fear conditioning/extinction and fear recall sessions were initially segregated in weak and strong-extinction groups. Two weeks later, animals underwent a fear recall session followed by a novelty-suppressed feeding (NSF) test. In acute experiments, WE rats were injected with either the fatty acid amide hydrolase (FAAH) inhibitor URB597 or the CB1 agonist WIN55,212-2 1 h prior to long-term recall and NSF testing. SE animals were injected with the inverse CB

    Topics: Animals; Anxiety; Benzamides; Benzoxazines; Carbamates; Conditioning, Psychological; Disease Models, Animal; Endocannabinoids; Fear; Male; Morpholines; Naphthalenes; Piperidines; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Rodentia; Stress Disorders, Post-Traumatic

2020
Effects of hypertension and FAAH inhibitor treatment of rats with primary and secondary hypertension considering the physicochemical properties of erythrocytes.
    Toxicology mechanisms and methods, 2020, Volume: 30, Issue:4

    Hypertension is one of the most common cardiovascular diseases in the world and is associated with oxidative stress. The aim of this study was to examine the effect of the chronic administration of the fatty-acid amide hydrolase inhibitor (URB597-[3-(3-carbamoylphenyl)phenyl]

    Topics: Amidohydrolases; Animals; Benzamides; Carbamates; Disease Models, Animal; Erythrocyte Membrane; Hypertension; Lipid Peroxidation; Male; N-Acetylneuraminic Acid; Oxidative Stress; Rats; Rats, Inbred SHR

2020
The FAAH Inhibitor URB597 Modulates Lipid Mediators in the Brain of Rats with Spontaneous Hypertension.
    Biomolecules, 2020, 07-10, Volume: 10, Issue:7

    Hypertension is accompanied by oxidative stress, which can be modified by the functioning of the endocannabinoid system playing a prominent modulatory role in the brain. The present study tested whether chronic administration of the fatty acid amide hydrolase (FAAH) inhibitor [3-(3-carbamoylphenyl) phenyl]N-cyclohexylcarbamate (URB597) to rats with primary hypertension (SHR) can modify redox balance and consequently brain phospholipid metabolism. Experiments were conducted using SHRs and normotensive control Wistar-Kyoto rats treated by intraperitoneal injection with URB597 for 14 days. The biochemical parameters were assayed in the rats' brains. Inhibition of FAAH activity by URB597 resulted in an increase in anandamide and GPR55 receptor levels, as well as a decrease in CB

    Topics: Animals; Arachidonic Acids; Benzamides; Brain; Carbamates; Disease Models, Animal; Endocannabinoids; Hypertension; Injections, Intraperitoneal; Male; Malondialdehyde; Oxidation-Reduction; Phospholipids; Polyunsaturated Alkamides; Rats; Rats, Inbred SHR; Rats, Inbred WKY; Receptor, Cannabinoid, CB2; Receptors, Cannabinoid; Receptors, G-Protein-Coupled

2020
URB597 protects against NLRP3 inflammasome activation by inhibiting autophagy dysfunction in a rat model of chronic cerebral hypoperfusion.
    Journal of neuroinflammation, 2019, Dec-09, Volume: 16, Issue:1

    Previous studies reported that URB597 (URB) had therapeutic potential for treating chronic cerebral hypoperfusion (CCH)-induced neuroinflammation and autophagy dysfunction. However, the interaction mechanisms underlying the CCH-induced abnormal excessive autophagy and neuroinflammation remain unknown. In this study, we investigated the roles of impaired autophagy in nucleotide-binding oligomerization domain-like receptor family pyrin domain-containing (NLRP) 3 inflammasome activation in the rat hippocampus and the underlying mechanisms under the condition of induced CCH as well as the effect of URB treatment.. The CCH rat model was established by bilateral common carotid artery occlusion (BCCAo), and rats were randomly divided into 11 groups as follows: (1) sham-operated, (2) BCCAo; (3) BCCAo+autophagy inhibitor 3-methyladenine (3-MA), (4) BCCAo+lysosome inhibitor chloroquine (CQ), (5) BCCAo+microglial activation inhibitor minocycline, (6) BCCAo+ROS scavenger N-acetylcysteine (NAC), (7) BCCAo+URB, (8) BCCAo+URB+3-MA, (9) BCCAo+URB+CQ, (10) BCCAo+URB+minocycline, (11) BCCAo+URB+NAC. The cell localizations of LC3, p62, LAMP1, TOM20 and NLRP3 were assessed by immunofluorescence staining. The levels of autophagy-related proteins (LC3, p62, LAMP1, BNIP3 and parkin), NLRP3 inflammasome-related proteins (NLRP3, CASP1 and IL-1β), microglial marker (OX-42) and proinflammatory cytokines (iNOS and COX-2) were evaluated by western blotting, and proinflammatory cytokines (IL-1β and TNF-a) were determined by ELISA. Reactive oxygen species (ROS) were assessed by dihydroethidium staining. The mitochondrial ultrastructural changes were examined by electron microscopy.. CCH induced microglial overactivation and ROS accumulation, promoting the activation of the NLRP3 inflammasome and the release of IL-1β. Blocked autophagy and mitophagy flux enhanced the activation of the NLRP3-CASP1 inflammasome pathway. However, URB alleviated impaired autophagy and mitophagy by decreasing mitochondrial ROS and microglial overactivation as well as restoring lysosomal function, which would further inhibit the activation of the NLRP3-CASP1 inflammasome pathway.. These findings extended previous studies indicating the function of URB in the mitigation of chronic ischemic injury of the brain.

    Topics: Animals; Autophagy; Benzamides; Brain Ischemia; Carbamates; Disease Models, Animal; Hippocampus; Inflammasomes; Male; Neuroprotective Agents; NLR Family, Pyrin Domain-Containing 3 Protein; Random Allocation; Rats; Rats, Sprague-Dawley

2019
Inhibition of Fatty Acid Amide Hydrolase Improves Depressive-Like Behaviors Independent of Its Peripheral Antinociceptive Effects in a Rat Model of Neuropathic Pain.
    Anesthesia and analgesia, 2019, Volume: 129, Issue:2

    Neuropathic pain is often associated with depression. Enhancing endocannabinoids by fatty acid amide hydrolase (FAAH) inhibitors relieves neuropathic pain and stress-induced depressive-like behaviors in animal models. However, it is unclear whether FAAH inhibitor can relieve neuropathic pain-induced depression by or not by its antinociceptive effects.. Adult male Wistar rats with chronic constriction injury (CCI) to the sciatic nerve were treated with the systemic FAAH inhibitor URB597 (5.8 mg·kg·day, intraperitoneally) or peripherally acting FAAH inhibitor URB937 (1.6 mg·kg·d, intraperitoneally; n = 11-12). The treatment was applied from the 15th day after surgery and continued for 15 days. Mechanical withdrawal threshold was examined by Von Frey test before surgery and on the 28th day after CCI. Depressive-like behaviors were evaluated by forced swimming test (FST) and novelty-suppressed feeding (NSF) after 15-day treatment. The levels of anandamide and 2-arachidonoylglycerol in hippocampus were examined by liquid chromatography and mass spectrometry. Hippocampal neurogenesis including proliferation, differentiation, and survival of newborn cells was assessed by immunohistochemistry.. After CCI injury, the rats developed significantly nociceptive and depressive-like behaviors, indicated by persistent mechanical hypersensitivity in Von Frey test, significantly prolonged immobility time in FST (sham: 84.2 ± 13.4 seconds versus CCI: 137.9 ± 18.8 seconds; P < .001), and protracted latency to feed in NSF (sham: 133.4 ± 19.4 seconds versus CCI: 234.9 ± 33.5 seconds; P < .001). For the CCI rats receiving treatment, compared to vehicle placebo group, pain threshold was increased by both URB597 (3.1 ± 1.0 vs 11.2 ± 1.2 g; P < .001) and URB937 (3.1 ± 1.0 vs 12.1 ± 1.3 g; P < .001). Immobility time of FST was reduced by URB597 (135.8 ± 16.6 vs 85.3 ± 17.2 seconds; P < .001) but not by URB937 (135.8 ± 16.6 vs 129.6 ± 17.8 seconds; P = .78). Latency to feed in NSF was also reduced by URB597 (235.9 ± 30.5 vs 131.8 ± 19.8 seconds; P < .001) but not by URB937 (235.9 ± 30.5 vs 232.2 ± 33.2 seconds; P = .72). Meanwhile, CCI decreased the number of proliferating cells and reduced survival of new mature neurons in hippocampus. URB597 but not URB937 treatment improved these cellular deficits.. Inhibition of FAAH can improve depressive-like behaviors induced by neuropathic pain independent of its peripheral antinociceptive action. Enhanced neurogenesis in hippocampus might contribute to the antidepressive effects of URB597.

    Topics: Amidohydrolases; Animals; Arachidonic Acids; Behavior, Animal; Benzamides; Carbamates; Depression; Disease Models, Animal; Endocannabinoids; Enzyme Inhibitors; Feeding Behavior; Glycerides; Hippocampus; Locomotion; Male; Neuralgia; Neurogenesis; Pain Threshold; Polyunsaturated Alkamides; Rats, Wistar; Receptor, Cannabinoid, CB1; Signal Transduction; Swimming

2019
Changes in physicochemical properties of kidney cells membrane as a consequence of hypertension and treatment of hypertensive rats with FAAH inhibitor.
    Chemico-biological interactions, 2019, Feb-01, Volume: 299

    Hypertension is a civilization disease leading to remodeling and damage of blood vessels, impaired renal function and premature death. The aim of this study was to compare the effect of chronic administration of URB597, the FAAH (fatty acid amide hydrolase) inhibitor, to rats with primary (SHRs) and secondary (DOCA-salt hypertensive rats) hypertension on electrical and physicochemical properties of kidney cells membranes. Changes in the electrical charge of the membrane may affect the cell functions. The electrical properties of the kidney cells (surface charge density, zeta potential) were measured by electrophoresis. Qualitative and quantitative composition of the membrane (phospholipids and proteins) was determined by HPLC and lipid peroxidation product (4-hydroxy-2E-hexenal; 4-HHE) level was examined by GCMSMS, while the sialic acid content was measured by resorcinol method. In rats with primary hypertension (SHR) and secondary hypertension (DOCA-salt), changes in electrical properties (increase of electric charge and zeta potential) and membrane composition (increase in sialic acid and protein concentration and decrease in phospholipid level) of kidney cells are observed in comparison to control animals. Greater changes were observed in DOCA-salt hypertensive rats. Changes in membrane properties caused by URB597 depend on the type of hypertension. The administration of URB597 to rats with primary hypertension partially prevents changes in the electrical properties (electrical charge, zeta potential) of the membrane caused by hypertension as well as in the sialic acid and proteins content. However, there is no reduction in oxidative stress, assessed by the level of 4-HHE, which may affect the metabolic function of the kidneys. URB597 administered to rats with DOCA salt does not prevent, but rather intensifies, changes caused by hypertension in the kidney. In conclusion, URB597 given to individuals with hypertension, particularly with secondary hypertension, enhancing some disturbances in electric and physicochemical properties of kidney cells observed in hypertension what may lead to additional kidney disorders. Therefore, further researches are necessary.

    Topics: Amidohydrolases; Animals; Benzamides; Carbamates; Cell Membrane; Chromatography, High Pressure Liquid; Desoxycorticosterone Acetate; Disease Models, Animal; Enzyme Inhibitors; Hypertension; Kidney; Lipid Peroxidation; Male; N-Acetylneuraminic Acid; Phospholipids; Rats; Rats, Inbred SHR; Rats, Wistar

2019
Role of the endocannabinoid system in the dorsal hippocampus in the cardiovascular changes and delayed anxiety-like effect induced by acute restraint stress in rats.
    Journal of psychopharmacology (Oxford, England), 2019, Volume: 33, Issue:5

    The dorsal hippocampus has a central role in modulating cardiovascular responses and behavioral adaptation to stress. The dorsal hippocampus also plays a key role in stress-associated mental disorders. The endocannabinoid system is widely expressed in the dorsal hippocampus and modulates defensive behaviors under stressful conditions. The endocannabinoid anandamide activates cannabinoid type 1 receptors and is metabolized by the fatty acid amide hydrolase enzyme.. We sought to verify whether cannabinoid type 1 receptors modulate stress-induced cardiovascular changes, and if pharmacological fatty acid amide hydrolase inhibition in the dorsal hippocampus would prevent the cardiovascular responses and the delayed anxiogenic-like behavior evoked by restraint stress in rats via cannabinoid type 1 receptors.. Independent groups received intra-dorsal-hippocampal injections of N-(piperidin-1yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-hpyrazole-3-carboxamide (AM251; cannabinoid type 1 receptor antagonist/inverse agonist, 10-300 pmol) and/or cyclohexyl carbamic acid 3'-carbamoyl-biphenyl-3-yl ester (URB597; fatty acid amide hydrolase inhibitor, 10 pmol) before the restraint stress session. Cardiovascular response during restraint stress or later behavioral parameters were evaluated.. Acute restraint stress altered the cardiovascular response, characterized by increased heart rate and mean arterial pressure, as well as decreased tail cutaneous temperature. It also induced a delayed anxiogenic-like effect, evidenced by reduced open arm exploration in the elevated plus maze 24 h after stress. AM251 exacerbated the stress-induced cardiovascular responses after injection into the dorsal hippocampus. In contrast, local injection of URB597 prevented the cardiovascular response and the delayed (24 h) behavioral consequences of restraint stress, effects attenuated by pretreatment with AM251.. Our data corroborate previous results indicating that the hippocampal endocannabinoid system modulates the outcome of stress exposure and suggest that this could involve modulation of the cardiovascular response during stress exposure.

    Topics: Amidohydrolases; Animals; Anxiety; Arachidonic Acids; Arterial Pressure; Behavior, Animal; Benzamides; Cannabinoid Receptor Agonists; Cannabinoid Receptor Antagonists; Carbamates; Disease Models, Animal; Endocannabinoids; Heart Rate; Hippocampus; Male; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Restraint, Physical; Skin Temperature; Stress, Psychological

2019
Effect of inhibition of fatty acid amide hydrolase on MPTP-induced dopaminergic neuronal damage.
    Neurologia, 2019, Volume: 34, Issue:3

    Parkinson's disease (PD) is a neurodegenerative disorder characterised by balance problems, muscle rigidity, and slow movement due to low dopamine levels and loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc). The endocannabinoid system is known to modulate the nigrostriatal pathway through endogenous ligands such as anandamide (AEA), which is hydrolysed by fatty acid amide hydrolase (FAAH). The purpose of this study was to increase AEA levels using FAAH inhibitor URB597 to evaluate the modulatory effect of AEA on dopaminergic neuronal death induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).. Our study included 4 experimental groups (n = 6 mice per group): a control group receiving no treatment, a group receiving URB597 (0.2mg/kg) every 3 days for 30 days, a group treated with MPTP (30mg/kg) for 5 days, and a group receiving URB597 and subsequently MPTP injections. Three days after the last dose, we conducted a series of behavioural tests (beam test, pole test, and stride length test) to compare motor coordination between groups. We subsequently analysed immunoreactivity of dopaminergic cells and microglia in the SNpc and striatum.. Mice treated with URB597 plus MPTP were found to perform better on behavioural tests than mice receiving MPTP only. According to the immunohistochemistry study, mice receiving MPTP showed fewer dopaminergic cells and fibres in the SNpc and striatum. Animals treated with URB597 plus MPTP displayed increased tyrosine hydroxylase immunoreactivity compared to those treated with MPTP only. Regarding microglial immunoreactivity, the group receiving MPTP showed higher Iba1 immunoreactivity in the striatum and SNpc than did the group treated with URB597 plus MPTP.. Our results show that URB597 exerts a protective effect since it inhibits dopaminergic neuronal death, decreases microglial immunoreactivity, and improves MPTP-induced motor alterations.

    Topics: 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine; Amidohydrolases; Animals; Benzamides; Carbamates; Disease Models, Animal; Dopaminergic Neurons; Male; Mice; Mice, Inbred C57BL; Motor Skills; Neuroprotective Agents; Parkinson Disease; Substantia Nigra; Tyrosine 3-Monooxygenase

2019
Enhancing Endocannabinoid Neurotransmission Augments The Efficacy of Extinction Training and Ameliorates Traumatic Stress-Induced Behavioral Alterations in Rats.
    Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 2018, Volume: 43, Issue:6

    Exposure to a traumatic event may result in the development of post-traumatic stress disorder (PTSD). Endocannabinoids are crucial modulators of the stress response, interfere with excessive retrieval and facilitate the extinction of traumatic memories. Exposure therapy, combined with pharmacotherapy, represents a promising tool for PTSD treatment. We investigated whether pharmacological manipulations of the endocannabinoid system during extinction learning ameliorates the behavioral changes induced by trauma exposure. Rats were exposed to inescapable footshocks paired with social isolation, a risk factor for PTSD. One week after trauma, rats were subjected to three spaced extinction sessions, mimicking human exposure therapy. The anandamide hydrolysis inhibitor URB597, the 2-arachidonoylglycerol hydrolysis inhibitor JZL184 or the cannabinoid agonist WIN55,212-2 were administered before or after the extinction sessions. Rats were tested for extinction retention 16 or 36 days after trauma and 24-h later for social interaction. Extinction training alone reduced fear of the trauma-associated context but did not restore normal social interaction. Traumatized animals not exposed to extinction sessions exhibited reductions in hippocampal anandamide content with respect to home-cage controls. Noteworthy, all drugs exerted beneficial effects, but URB597 (0.1 mg/kg) induced the best improvements by enhancing extinction consolidation and restoring normal social behavior in traumatized rats through indirect activation of CB1 receptors. The ameliorating effects remained stable long after treatment and trauma exposure. Our findings suggest that drugs potentiating endocannabinoid neurotransmission may represent promising tools when combined to exposure-based psychotherapies in the treatment of PTSD.

    Topics: Amidohydrolases; Animals; Arachidonic Acids; Benzamides; Benzodioxoles; Benzoxazines; Cannabinoid Receptor Modulators; Carbamates; Disease Models, Animal; Electroshock; Endocannabinoids; Extinction, Psychological; Glycerides; Male; Morpholines; Naphthalenes; Piperidines; Psychotropic Drugs; Rats, Sprague-Dawley; Social Isolation; Stress Disorders, Post-Traumatic; Synaptic Transmission

2018
Modulation of central endocannabinoid system results in gastric mucosal protection in the rat.
    Brain research bulletin, 2018, Volume: 139

    Previous findings showed that inhibitors of fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), degrading enzymes of anandamide (2-AEA) and 2-arachidonoylglycerol (2-AG), reduced the nonsteroidal anti-inflammatory drug-induced gastric lesions. The present study aimed to investigate: i./whether central or peripheral mechanism play a major role in the gastroprotective effect of inhibitors of FAAH, MAGL and AEA uptake, ii./which peripheral mechanism(s) may play a role in mucosal protective effect of FAAH, MAGL and uptake inhibitors.. Gastric mucosal damage was induced by acidified ethanol. Gastric motility was measured in anesthetized rats. Catalepsy and the body temperature were also evaluated. Mucosal calcitonin gene-related peptide (CGRP), somatostatin concentrations and superoxide dismutase (SOD) activity were measured. The compounds were injected intraperitoneally (i.p.) or intracerebroventricularly (i.c.v.).. 1. URB 597, JZL184 (inhibitors of FAAH and MAGL) and AM 404 (inhibitor of AEA uptake) decreased the mucosal lesions significantly given either i.c.v. or i.p. 2. URB 937, the peripherally restricted FAAH inhibitor failed to exert significant action injected i.p. 3. Ethanol-induced decreased levels of mucosal CGRP and somatostatin were reversed by URB 597, JZL 184 and AM 404, the decreased SOD activity was elevated significantly by URB 597 and JZL 184. 4. Neither compounds given i.c.v. influenced gastric motility, elicited catalepsy, or hypothermia.. Elevation of central endocannabinoid levels by blocking their degradation or uptake via stimulation of mucosal defensive mechanisms resulted in gastroprotective action against ethanol-induced mucosal injury. These findings might suggest that central endocannabinoid system may play a role in gastric mucosal defense and maintenance of mucosal integrity.

    Topics: Analysis of Variance; Animals; Arachidonic Acids; Benzamides; Benzodioxoles; Calcitonin Gene-Related Peptide; Carbamates; Catalepsy; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Administration Routes; Endocannabinoids; Ethanol; Gastric Mucosa; Gastrointestinal Motility; Hypothermia; Male; Piperidines; Rats; Rats, Wistar; Somatostatin; Stomach Diseases; Superoxide Dismutase

2018
Cannabinoids prevent depressive-like symptoms and alterations in BDNF expression in a rat model of PTSD.
    Progress in neuro-psychopharmacology & biological psychiatry, 2018, 06-08, Volume: 84, Issue:Pt A

    Posttraumatic stress disorder (PTSD) is a debilitating condition highly comorbid with depression. The endocannabinoid (eCB) system and brain-derived neurotrophic factor (BDNF) are suggestively involved in both disorders. We examined whether cannabinoids can prevent the long-term depressive-like symptoms induced by exposure to the shock and situational reminders (SRs) model of PTSD. The CB1/2 receptor agonist WIN55,212-2 (0.5 mg/kg; i.p.), the fatty acid hydrolase (FAAH) inhibitor URB597 (0.3 mg/kg, i.p.) or vehicle were administered 2 h after severe shock. Cannabinoids prevented the shock/SRs-induced alterations in social recognition memory, locomotion, passive coping, anxiety-like behavior, anhedonia, fear retrieval, fear extinction and startle response as well as the decrease in BDNF levels in the hippocampus and prefrontal cortex (PFC). Furthermore, significant correlations were found between depressive-like behaviors and BDNF levels in the brain. The findings suggest that cannabinoids may prevent both depressive- and PTSD-like symptoms following exposure to severe stress and that alterations in BDNF levels in the brains' fear circuit are involved in these effects.

    Topics: Amidohydrolases; Animals; Benzamides; Benzoxazines; Brain-Derived Neurotrophic Factor; Cannabinoid Receptor Agonists; Cannabinoids; Carbamates; Depression; Disease Models, Animal; Electroshock; Enzyme Inhibitors; Gene Expression; Hippocampus; Male; Morpholines; Naphthalenes; Prefrontal Cortex; Rats, Sprague-Dawley; Stress Disorders, Post-Traumatic

2018
The Effect of Long-Term Administration of Fatty Acid Amide Hydrolase Inhibitor URB597 on Oxidative Metabolism in the Heart of Rats with Primary and Secondary Hypertension.
    Molecules (Basel, Switzerland), 2018, Sep-14, Volume: 23, Issue:9

    Topics: Amidohydrolases; Animals; Benzamides; Carbamates; Desoxycorticosterone Acetate; Disease Models, Animal; Gene Expression Regulation; Heart; Hypertension; Injections, Intraperitoneal; Male; NF-E2-Related Factor 2; Oxidative Stress; Rats; Xanthine Oxidase

2018
Chronic inhibition of fatty acid amide hydrolase by URB597 produces differential effects on cardiac performance in normotensive and hypertensive rats.
    British journal of pharmacology, 2017, Volume: 174, Issue:13

    Fatty acid amide hydrolase (FAAH) inhibitors are postulated to possess anti-hypertensive potential, because their acute injection decreases BP in spontaneously hypertensive rats (SHR), partly through normalization of cardiac contractile function. Here, we examined whether the potential hypotensive effect of chronic FAAH inhibition by URB597 in hypertensive rats correlated with changes in cardiac performance.. Experiments were performed using perfused hearts and left atria isolated from 8- to 10-week-old SHR, age-matched deoxycorticosterone acetate (DOCA)-salt rats and normotensive controls chronically treated with URB597 (1 mg·kg. URB597 decreased BP only in the DOCA-salt rats, along with a reduction of ventricular hypertrophy and diastolic stiffness, determined in hypertension. We also observed normalization of the negative inotropic atrial response to the cannabinoid receptor agonist CP55940. In the SHR model, URB597 normalized (atria) and enhanced (hearts) the positive ino- and chronotropic effects of the β-adrenoceptor agonist isoprenaline respectively. Ventricular CB. Hypotensive effect of chronic FAAH inhibition depend on the model of hypertension and partly correlate with improved cardiac performance. In normotensive rats, chronic FAAH inhibition produced several side-effects. Thus, the therapeutic potential of these agents should be interpreted cautiously.

    Topics: Amidohydrolases; Animals; Antihypertensive Agents; Benzamides; Blood Pressure; Carbamates; Cyclohexanols; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Inhibitors; Heart; Isoproterenol; Male; Myocardial Contraction; Rats; Rats, Inbred SHR; Rats, Wistar; Structure-Activity Relationship

2017
Inhibition of SENP3 by URB597 ameliorates neurovascular unit dysfunction in rats with chronic cerebral hypoperfusion.
    Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 2017, Volume: 91

    Disruption of the neurovascular unit (NVU), induced by chronic cerebral hypoperfusion (CCH), has been broadly found in various neurological disorders. SUMO-specific protease 3 (SENP3) is expressed in neurons, astrocytes, and microglia, and regulates a variety of cell events. However, whether SENP3 is involved in neurovascular injury under the condition of CCH is still elusive. To address this issue, we investigated the effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597 on NVU and the role of SENP3 in this process, as well as the underling mechanisms. The expression of SENP3 was detected by immunochemistry. The function and structure of the NVU was assessed by Western blot analysis and transmission electron microscopy. CCH caused the upregulation of SENP3, the disruption of cell and non-cell components at the protein level within the NVU, and ultrastructural deterioration. The NVU impairment as well as overexpression of SENP3 were reversed by treatment with URB597. These results reveal a novel neuroprotective role in URB597, which implicates URB597 in the amelioration of CCH-induced NVU impairment by inhibiting SENP3.

    Topics: Animals; Apoptosis; Benzamides; Brain; Brain Ischemia; Carbamates; Chronic Disease; Disease Models, Animal; Endopeptidases; Male; Rats; Rats, Sprague-Dawley; Reactive Oxygen Species; Up-Regulation

2017
Sensitization of C-fiber nociceptors in mice with sickle cell disease is decreased by local inhibition of anandamide hydrolysis.
    Pain, 2017, Volume: 158, Issue:9

    Chronic pain and hyperalgesia, as well as pain resulting from episodes of vaso-occlusion, are characteristic features of sickle cell disease (SCD) and are difficult to treat. Since there is growing evidence that increasing local levels of endocannabinoids can decrease hyperalgesia, we examined the effects of URB597, a fatty acid amide hydrolase (FAAH) inhibitor, which blocks the hydrolysis of the endogenous cannabinoid anandamide, on hyperalgesia and sensitization of cutaneous nociceptors in a humanized mouse model of SCD. Using homozygous HbSS-BERK sickle mice, we determined the effects of URB597 on mechanical hyperalgesia and on sensitization of C-fiber nociceptors in vivo. Intraplantar administration of URB597 (10 μg in 10 μL) decreased the frequency of withdrawal responses evoked by a von Frey monofilament (3.9 mN bending force) applied to the plantar hind paw. This was blocked by the CB1 receptor antagonist AM281 but not by the CB2 receptor antagonist AM630. Also, URB597 decreased hyperalgesia in HbSS-BERK/CB2R sickle mice, further confirming the role of CB1 receptors in the effects produced by URB597. Electrophysiological recordings were made from primary afferent fibers of the tibial nerve in anesthetized mice. The proportion of Aδ- and C-fiber nociceptors that exhibited spontaneous activity and responses of C-fibers to mechanical and thermal stimuli were greater in HbSS-BERK sickle mice as compared to control HbAA-BERK mice. Spontaneous activity and evoked responses of nociceptors were decreased by URB597 via CB1 receptors. It is suggested that enhanced endocannabinoid activity in the periphery may be beneficial in alleviating chronic pain associated with SCD.

    Topics: Anemia, Sickle Cell; Animals; Arachidonic Acids; Benzamides; Carbamates; Disease Models, Animal; Endocannabinoids; Enzyme Inhibitors; Evoked Potentials; Hemoglobins; Humans; Hydrolysis; Hyperalgesia; Indoles; Male; Mice; Mice, Transgenic; Morpholines; Nerve Fibers, Unmyelinated; Nociceptors; Pain Threshold; Polyunsaturated Alkamides; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2

2017
The effects of chronic FAAH inhibition on myocardial lipid metabolism in normotensive and DOCA-salt hypertensive rats.
    Life sciences, 2017, Aug-15, Volume: 183

    There is significant evidence that the endocannabinoid system (ECS) takes part in the regulation of the cardiovascular system in hypertension. It is quite well established that hypertension causes several changes in the heart metabolism, but it is still unknown whether the ECS affects this process. Therefore, we investigated the influence of prolonged ECS activation on myocardial lipid metabolism in deoxycorticosterone acetate (DOCA)-salt hypertensive rats by chronic fatty acid amide hydrolase (FAAH) inhibition.. We examined the uptake and oxidation of palmitic acid during the heart perfusion as well as intramyocardial and plasma lipid contents using gas liquid chromatography. Total, plasmalemmal and intracellular expressions of selected proteins were estimated by the Western blot technique. Moreover, the left ventricle's morphology, including myocardial vessels density, was measured using immunohistochemistry.. We demonstrated that hypertension induced cardiomyocytes and myocardial blood vessels hypertrophy, followed by a reduction in myocardial palmitate oxidation. Interestingly, prolonged activation of the ECS in the normotensive rats induced cardiomyocyte enlargement and intensified fatty acids metabolism. We have also shown that FAAH inhibition improved morphology of coronary blood vessels and only partially maintained its effect on lipid metabolism in the DOCA-salt hearts (i.e. elevated plasma and intramyocardial TAG contents as well as plasmalemmal FAT/CD36 and total FATP1 expressions).. This study revealed that chronic FAAH inhibition has no protective effects on the heart lipid metabolism in hypertension.

    Topics: Amidohydrolases; Animals; Benzamides; Blood Pressure; Carbamates; Chromatography, Gas; Chromatography, Liquid; Coronary Vessels; Desoxycorticosterone Acetate; Disease Models, Animal; Endocannabinoids; Fatty Acids; Hypertension; Lipid Metabolism; Male; Myocardium; Myocytes, Cardiac; Rats; Rats, Wistar

2017
The effects of enhancing endocannabinoid signaling and blocking corticotrophin releasing factor receptor in the amygdala and hippocampus on the consolidation of a stressful event.
    European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology, 2017, Volume: 27, Issue:9

    Current clinical and pre-clinical data suggest that both cannabinoid agents and blockage of CRF through corticotrophin releasing factor receptor type 1 (CRFr1) may offer therapeutic benefits for post-traumatic stress disorder (PTSD). Here we aim to determine whether they are more effective when combined when microinjected into the basolateral amygdala (BLA) or CA1 area of the hippocampus after exposure to a stressful event in the shock/reminders rat model for PTSD. Injection of the fatty acid amide hydrolase (FAAH) inhibitor URB597 after the shock into either the BLA or CA1 facilitated extinction, and attenuated startle response and anxiety-like behavior. These preventive effects of URB597 were found to be mediated by the CB1 receptor. Intra-BLA and intra-CA1 microinjection of the CRFr1 antagonist, CP-154,526 attenuated startle response. When microinjected into the BLA, CP-154,526 also attenuated freezing behavior during exposure to the first reminder and decreased anxiety-like behavior. The combined treatment of URB597 and CP-154,526 was not more effective than the separate treatments. Finally, mRNA levels of CRF, CRFr1 and CB1r were significantly higher in the BLA of rats exposed to shock and reminders compared to non-shocked rats almost one month after the shock. Taken together, the results show that enhancing endocannabinoid signaling in the amygdala and hippocampus produced a more favorable spectrum of effects than those caused by the CRFr1 antagonist. The findings suggest that FAAH inhibitors may be used as a novel treatment for stress-related anxiety disorders.

    Topics: Amidohydrolases; Animals; Anxiety; Basolateral Nuclear Complex; Benzamides; CA1 Region, Hippocampal; Carbamates; Disease Models, Animal; Endocannabinoids; Male; Memory Consolidation; Nootropic Agents; Pyrimidines; Pyrroles; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptors, Corticotropin-Releasing Hormone; Reflex, Startle; RNA, Messenger; Stress Disorders, Post-Traumatic; Stress, Psychological

2017
Cannabinoids prevent the differential long-term effects of exposure to severe stress on hippocampal- and amygdala-dependent memory and plasticity.
    Hippocampus, 2017, Volume: 27, Issue:10

    Exposure to excessive or uncontrolled stress is a major factor associated with various diseases including posttraumatic stress disorder (PTSD). The consequences of exposure to trauma are affected not only by aspects of the event itself, but also by the frequency and severity of trauma reminders. It was suggested that in PTSD, hippocampal-dependent memory is compromised while amygdala-dependent memory is strengthened. Several lines of evidence support the role of the endocannabinoid (eCB) system as a modulator of the stress response. In this study we aimed to examine cannabinoids modulation of the long-term effects (i.e., 1 month) of exposure to a traumatic event on memory and plasticity in the hippocampus and amygdala. Following exposure to the shock and reminders model of PTSD in an inhibitory avoidance light-dark apparatus rats demonstrated: (i) enhanced fear retrieval and impaired inhibitory extinction (Ext), (ii) no long-term potentiation (LTP) in the CA1, (iii) impaired hippocampal-dependent short-term memory in the object location task, (iv) enhanced LTP in the amygdala, and (v) enhanced amygdala-dependent conditioned taste aversion memory. The cannabinoid CB1/2 receptor agonist WIN55-212,2 (0.5mg/kg, i.p.) and the fatty acid amide hydrolase (FAAH) inhibitor URB597 (0.3mg/kg, i.p.), administered 2 hr after shock exposure prevented these opposing effects on hippocampal- and amygdala-dependent processes. Moreover, the effects of WIN55-212,2 and URB597 on Ext and acoustic startle were prevented by co-administration of a low dose of the CB1 receptor antagonist AM251 (0.5mg/kg, i.p.), suggesting that the preventing effects of both drugs are mediated by CB1 receptors. Exposure to shock and reminders increased CB1 receptor levels in the CA1 and basolateral amygdala 1 month after shock exposure and this increase was also prevented by administering WIN55-212,2 or URB597. Taken together, these findings suggest the involvement of the eCB system, and specifically CB1 receptors, in the opposite effects of severe stress on memory and plasticity in the hippocampus and amygdala.

    Topics: Amidohydrolases; Amygdala; Animals; Avoidance Learning; Benzamides; Benzoxazines; Bromine; Cannabinoid Receptor Modulators; Cannabinoids; Carbamates; Disease Models, Animal; Drug Combinations; Electroshock; Enzyme Inhibitors; Fear; Glutamates; Hippocampus; Magnesium; Male; Memory; Morpholines; Naphthalenes; Neuronal Plasticity; Piperidines; Pyrazoles; Rats, Sprague-Dawley; Receptors, Cannabinoid; Stress Disorders, Post-Traumatic

2017
Fatty acid amide hydrolase inhibitor URB597 may protect against kainic acid-induced damage to hippocampal neurons: Dependence on the degree of injury.
    Epilepsy research, 2017, Volume: 137

    Status epilepticus (SE) provokes changes, which lead to neuronal alterations. Endocannabinoids (eCBs) can affect the neuronal survival during excitotoxicity and brain damage. Using a kainic acid (KA)-induced experimental SE model, we investigated whether cellular changes entail damage to endoplasmic reticulum (ER), mitochondria, and nuclei in hippocampal cells (CA1 field), and whether these alterations can be diminished by treatment with URB597, an inhibitor of eCB enzymatic degradation.. SE was induced in Wistar rats by the microinjection of KA into the lateral ventricle. URB597 or a vehicle (10% DMSO) were injected in the same way into the brain of animals 24h after the KA infusion and then daily for the next nine days. The behavior of animals was controlled visually and recorded with a video system. The intensity of SE significantly varied in different animals. Convulsive (stages 3-5 according to the Racine scale) and nonconvulsive seizures (mainly stages 1, 2 and rarely 3, 4) were recognized.. Two weeks after SE, a significant loss of hippocampal cells occurred in animals with KA injections. In survived cells, ultrastructural alterations in ER, mitochondria, and nuclei of hippocampal neurons were observed. The degree of cell injury depended on the severity of SE. Alterations evoked by moderate seizures were prevented or diminished by URB597, but strong seizures induced mostly irreversible damage.. The beneficial impact of the FAAH inhibitor URB597 can give impetus to the development of novel neuroprotective strategies.

    Topics: Amidohydrolases; Animals; Benzamides; Carbamates; Cell Death; Cell Nucleus; Cell Survival; Disease Models, Animal; Endoplasmic Reticulum; Enzyme Inhibitors; Hippocampus; Kainic Acid; Microscopy, Electron; Mitochondria; Neurons; Neuroprotective Agents; Rats, Wistar; Severity of Illness Index; Status Epilepticus

2017
Effects of alprazolam and cannabinoid-related compounds in an animal model of panic attack.
    Behavioural brain research, 2017, 01-15, Volume: 317

    Selective stimulation of carotid chemoreceptors by intravenous infusion of low doses of potassium cyanide (KCN) produces short-lasting escape responses that have been proposed as a model of panic attack. In turn, preclinical studies suggest that facilitation of the endocannabinoid system attenuate panic-like responses. Here, we compared the effects of cannabinoid-related compounds to those of alprazolam, a clinically effective panicolytic, on the duration of the escape reaction induced by intravenous infusion of KCN (80μg) in rats. Alprazolam (1, 2, 4mg/kg) decreased escape duration at doses that did not alter basal locomotor activity. URB597 (0.1, 0.3, 1mg/kg; inhibitor of anandamide hydrolysis), WIN55,212-2 (0.1, 0.3, 1mg/kg; synthetic cannabinoid), arachidonoyl-serotonin (1, 2.5, 5mg/kg; dual TRPV1 and anandamide hydrolysis inhibitor), and cannabidiol (5, 10, 20, 40mg/kg; a phytocannabinoid) did not decrease escape duration. Alprazolam also prevented the increase in arterial pressure evoked by KCN, while bradycardia was unchanged. This study reinforces the validity of the KCN-evoked escape as a model of panic attack. However, it does not support a role for the endocannabinoid system in this behavioral response. These results might have implications for the screening of novel treatments for panic disorder.

    Topics: Alprazolam; Analgesics; Animals; Arachidonic Acids; Benzamides; Benzoxazines; Blood Pressure; Cannabinoids; Carbamates; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Inhibitors; Escape Reaction; Heart Rate; Hypnotics and Sedatives; Locomotion; Male; Mice; Morpholines; Naphthalenes; Panic Disorder; Potassium Cyanide; Rats, Wistar; Serotonin

2017
URB597 improves cognitive impairment induced by chronic cerebral hypoperfusion by inhibiting mTOR-dependent autophagy.
    Neuroscience, 2017, 03-06, Volume: 344

    Chronic cerebral hypoperfusion (CCH) is associated with various ischemic cerebrovascular diseases that are characterized by cognitive impairment. The role of autophagy in cognitive dysfunction under conditions of CCH is poorly understood. To address this issue, the present study investigated the effect of the fatty acid amide hydrolase (FAAH) inhibitor URB597 on autophagy and cognition in a CCH model as well as the underlying mechanisms. Cognitive function was evaluated with the Morris water maze and by assessing long-term potentiation (LTP). The expression of autophagy-related proteins and mammalian target of rapamycin (mTOR) signaling pathway components was evaluated by immunofluorescence and western blot analyses, and ultrastructural changes were examined by transmission electron microscopy (EM). URB597 improved cognitive impairment by inhibiting CCH-induced autophagy, which was associated with mTOR signaling. Moreover, the ultrastructural deterioration resulting from CCH was improved by chronic treatment with URB597. These findings indicate that URB597 modulates autophagy in an mTOR-dependent manner, and mitigates neuronal damage and cognitive deterioration caused by CCH.

    Topics: Amidohydrolases; Animals; Apoptosis; Autophagy; Benzamides; CA1 Region, Hippocampal; Carbamates; Carotid Artery, Common; Cerebrovascular Disorders; Cognition; Cognitive Dysfunction; Disease Models, Animal; Long-Term Potentiation; Male; Maze Learning; Neurons; Neuroprotective Agents; Nootropic Agents; Phosphorylation; Rats, Sprague-Dawley; TOR Serine-Threonine Kinases

2017
Actions of the dual FAAH/MAGL inhibitor JZL195 in a murine neuropathic pain model.
    British journal of pharmacology, 2016, Volume: 173, Issue:1

    While cannabinoids have been proposed as a potential treatment for neuropathic pain, they have limitations. Cannabinoid receptor agonists have good efficacy in animal models of neuropathic pain; they have a poor therapeutic window. Conversely, selective fatty acid amide hydrolase (FAAH) inhibitors that enhance the endocannabinoid system have a better therapeutic window, but lesser efficacy. We examined whether JZL195, a dual inhibitor of FAAH and monacylglycerol lipase (MAGL), could overcome these limitations.. C57BL/6 mice underwent the chronic constriction injury (CCI) model of neuropathic pain. Mechanical and cold allodynia, plus cannabinoid side effects, were assessed in response to systemic drug application.. JZL195 and the cannabinoid receptor agonist WIN55212 produced dose-dependent reductions in CCI-induced mechanical and cold allodynia, plus side effects including motor incoordination, catalepsy and sedation. JZL195 reduced allodynia with an ED50 at least four times less than that at which it produced side effects. By contrast, WIN55212 reduced allodynia and produce side effects with similar ED50s. The maximal anti-allodynic effect of JZL195 was greater than that produced by selective FAAH, or MAGL inhibitors. The JZL195-induced anti-allodynia was maintained during repeated treatment.. These findings suggest that JZL195 has greater anti-allodynic efficacy than selective FAAH, or MAGL inhibitors, plus a greater therapeutic window than a cannabinoid receptor agonist. Thus, dual FAAH/MAGL inhibition may have greater potential in alleviating neuropathic pain, compared with selective FAAH and MAGL inhibitors, or cannabinoid receptor agonists.

    Topics: Amidohydrolases; Animals; Benzamides; Benzodioxoles; Benzoxazines; Carbamates; Disease Models, Animal; Dose-Response Relationship, Drug; Hyperalgesia; Male; Mice; Monoacylglycerol Lipases; Morpholines; Naphthalenes; Neuralgia; Piperazines; Piperidines

2016
THC and endocannabinoids differentially regulate neuronal activity in the prefrontal cortex and hippocampus in the subchronic PCP model of schizophrenia.
    Journal of psychopharmacology (Oxford, England), 2016, Volume: 30, Issue:2

    Cannabis use has been associated with an increased risk to develop schizophrenia as well as symptom exacerbation in patients. In contrast, clinical studies have revealed an inverse relationship between the cerebrospinal fluid levels of the endocannabinoid anandamide and symptom severity, suggesting a therapeutic potential for endocannabinoid-enhancing drugs. Indeed, preclinical studies have shown that these drugs can reverse distinct behavioral deficits in a rodent model of schizophrenia. The mechanisms underlying the differences between exogenous and endogenous cannabinoid administration are currently unknown. Using the phencyclidine (PCP) rat model of schizophrenia, we compared the effects on neuronal activity of systematic administration of delta-9-tetrahydrocannabinol (THC) with the fatty acid amide hydrolase inhibitor URB597. Specifically, we found that the inhibitory response in the prefrontal cortex to THC administration was absent in PCP-treated rats. In contrast, an augmented response to endocannabinoid upregulation was observed in the prefrontal cortex of PCP-treated rats. Interestingly, differential effects were also observed at the neuronal population level, as endocannabinoid upregulation induced opposite effects on coordinated activity when compared with THC. Such information is important for understanding why marijuana and synthetic cannabinoid use may be contraindicated in schizophrenia patients while endocannabinoid enhancement may provide a novel therapeutic approach.

    Topics: Animals; Arachidonic Acids; Benzamides; Carbamates; Disease Models, Animal; Dronabinol; Endocannabinoids; Hippocampus; Male; Phencyclidine; Polyunsaturated Alkamides; Prefrontal Cortex; Rats; Rats, Sprague-Dawley; Schizophrenia; Up-Regulation

2016
Sex differences in hippocampal response to endocannabinoids after exposure to severe stress.
    Hippocampus, 2016, Volume: 26, Issue:7

    Women are more vulnerable to stress-related mental disorders than men and the naturally occurring fluctuation in estrogen that occur across the estrus cycle can dramatically influence the pathophysiology observed following traumatic events. It has been demonstrated that the endocannabinoid (eCB) system could represent a therapeutic target for the treatment of post-traumatic stress disorder (PTSD) in males. The current study aimed to examine the effects of exposure to a traumatic event and acute enhancement of eCB signaling on hippocampal-dependent learning and plasticity in male and female rats. Males and females were exposed to the single prolonged stress (SPS) model of PTSD (restraint, forced swim, and sedation) followed by acute administration of the fatty acid amide hydrolase (FAAH) inhibitor URB597 (0.3 mg/kg). Females were in diestrus during SPS exposure. SPS exposure impaired extinction and hippocampal plasticity tested a week later in males and females. Sex differences were observed in the effects of URB597 on hippocampal plasticity of SPS-exposed rats. Also, URB597 normalized the SPS-induced upregulation in CB1 receptor levels in the amygdala, prefrontal cortex (PFC), and hippocampus in males. In females, URB597 normalized the SPS-induced up regulation in CB1 receptors in the amygdala and PFC, but not hippocampus. Our findings support the eCB system as a therapeutic target for the treatment of disorders associated to inefficient fear coping in males and females. There are differences in the hippocampal response of males and females to the enhancement of eCB signaling after intense stress suggesting sex differences in treatment efficacy. © 2016 Wiley Periodicals, Inc.

    Topics: Amidohydrolases; Amygdala; Animals; Benzamides; Carbamates; Disease Models, Animal; Endocannabinoids; Enzyme Inhibitors; Fear; Female; Hippocampus; Long-Term Potentiation; Male; Prefrontal Cortex; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Sex Characteristics; Stress Disorders, Post-Traumatic; Stress, Psychological

2016
Fatty acid amide hydrolase inhibition for the symptomatic relief of Parkinson's disease.
    Brain, behavior, and immunity, 2016, Volume: 57

    Elements of the endocannabinoid system are strongly expressed in the basal ganglia where they suffer profound rearrangements after dopamine depletion. Modulation of the levels of the endocannabinoid 2-arachidonoyl-glycerol by inhibiting monoacylglycerol lipase alters glial phenotypes and provides neuroprotection in a mouse model of Parkinson's disease. In this study, we assessed whether inhibiting fatty acid amide hydrolase could also provide beneficial effects on the time course of this disease. The fatty acid amide hydrolase inhibitor, URB597, was administered chronically to mice treated with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and probenecid (MPTPp) over 5weeks. URB597 (1mg/kg) prevented MPTPp induced motor impairment but it did not preserve the dopamine levels in the nigrostriatal pathway or regulate glial cell activation. The symptomatic relief of URB597 was confirmed in haloperidol-induced catalepsy assays, where its anti-cataleptic effects were both blocked by antagonists of the two cannabinoid receptors (CB1 and CB2), and abolished in animals deficient in these receptors. Other fatty acid amide hydrolase inhibitors, JNJ1661010 and TCF2, also had anti-cataleptic properties. Together, these results demonstrate an effect of fatty acid amide hydrolase inhibition on the motor symptoms of Parkinson's disease in two distinct experimental models that is mediated by cannabinoid receptors.

    Topics: Amidohydrolases; Animals; Arachidonic Acids; Benzamides; Cannabinoid Receptor Agonists; Carbamates; Disease Models, Animal; Endocannabinoids; Male; Mice; Mice, Inbred C57BL; Parkinsonian Disorders; Polyunsaturated Alkamides; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2

2016
Therapeutic potential of inhibitors of endocannabinoid degradation for the treatment of stress-related hyperalgesia in an animal model of chronic pain.
    Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology, 2015, Volume: 40, Issue:2

    The occurrence of chronic stress, depression, and anxiety can increase nociception in humans and may facilitate the transition from localized to chronic widespread pain. The mechanisms underlying chronic widespread pain are still unknown, hindering the development of effective pharmacological therapies. Here, we exposed C57BL/6J mice to chronic unpredictable stress (CUS) to investigate how persistent stress affects nociception. Next, mice were treated with multiple intramuscular nerve growth factor (NGF) injections, which induced chronic widespread nociception. Thus, combination of CUS and NGF served as a model where psychophysiological impairment coexists with long-lasting hyperalgesia. We found that CUS increased anxiety- and depression-like behavior and enhanced basal nociception in mice. When co-applied with repeated NGF injections, CUS elicited a sustained long-lasting widespread hyperalgesia. In order to evaluate a potential therapeutic strategy for the treatment of chronic pain associated with stress, we hypothesized that the endocannabinoid system (ECS) may represent a target signaling system. We found that URB597, an inhibitor of the anandamide-degrading enzyme fatty acid amide hydrolase (FAAH), and JZL184, an inhibitor of the 2-arachidonoyl glycerol-degrading enzyme monoacylglycerol lipase (MAGL), increased eCB levels in the brain and periphery and were both effective in reducing CUS-induced anxiety measured by the light-dark test and CUS-induced thermal hyperalgesia. Remarkably, the long-lasting widespread hyperalgesia induced by combining CUS and NGF was effectively reduced by URB597, but not by JZL184. Simultaneous inhibition of FAAH and MAGL did not improve the overall therapeutic response. Therefore, our findings indicate that enhancement of anandamide signaling with URB597 is a promising pharmacological approach for the alleviation of chronic widespread nociception in stress-exposed mice, and thus, it could represent a potential treatment strategy for chronic pain associated with neuropsychiatric disorders in humans.

    Topics: Amidohydrolases; Analgesics, Non-Narcotic; Animals; Anxiety; Benzamides; Benzodioxoles; Brain; Carbamates; Chronic Pain; Depression; Disease Models, Animal; Endocannabinoids; Enzyme Inhibitors; Hyperalgesia; Male; Mice, Inbred C57BL; Monoacylglycerol Lipases; Nerve Growth Factor; Piperidines; Stress, Psychological; Uncertainty

2015
Endocannabinoid degradation inhibition improves neurobehavioral function, blood-brain barrier integrity, and neuroinflammation following mild traumatic brain injury.
    Journal of neurotrauma, 2015, Mar-01, Volume: 32, Issue:5

    Traumatic brain injury (TBI) is an increasingly frequent and poorly understood condition lacking effective therapeutic strategies. Inflammation and oxidative stress (OS) are critical components of injury, and targeted interventions to reduce their contribution to injury should improve neurobehavioral recovery and outcomes. Recent evidence reveals potential protective, yet short-lived, effects of the endocannabinoids (ECs), 2-arachidonoyl glycerol (2-AG) and N-arachidonoyl-ethanolamine (AEA), on neuroinflammatory and OS processes after TBI. The aim of this study was to determine whether EC degradation inhibition after TBI would improve neurobehavioral recovery by reducing inflammatory and oxidative damage. Adult male Sprague-Dawley rats underwent a 5-mm left lateral craniotomy, and TBI was induced by lateral fluid percussion. TBI produced apnea (17±5 sec) and a delayed righting reflex (479±21 sec). Thirty minutes post-TBI, rats were randomized to receive intraperitoneal injections of vehicle (alcohol, emulphor, and saline; 1:1:18) or a selective inhibitor of 2-AG (JZL184, 16 mg/kg) or AEA (URB597, 0.3 mg/kg) degradation. At 24 h post-TBI, animals showed significant neurological and -behavioral impairment as well as disruption of blood-brain barrier (BBB) integrity. Improved neurological and -behavioral function was observed in JZL184-treated animals. BBB integrity was protected in both JZL184- and URB597-treated animals. No significant differences in ipsilateral cortex messenger RNA expression of interleukin (IL)-1β, IL-6, chemokine (C-C motif) ligand 2, tumor necrosis factor alpha, cyclooxygenase 2 (COX2), or nicotinamide adenine dinucleotide phosphate oxidase (NOX2) and protein expression of COX2 or NOX2 were observed across experimental groups. Astrocyte and microglia activation was significantly increased post-TBI, and treatment with JZL184 or URB597 blocked activation of both cell types. These findings suggest that EC degradation inhibition post-TBI exerts neuroprotective effects. Whether repeated dosing would achieve greater protection remains to be examined.

    Topics: Animals; Arachidonic Acids; Benzamides; Benzodioxoles; Blood-Brain Barrier; Blotting, Western; Brain Injuries; Carbamates; Disease Models, Animal; Endocannabinoids; Glycerides; Immunohistochemistry; Inflammation; Male; Neuroprotective Agents; Piperidines; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Real-Time Polymerase Chain Reaction; Recovery of Function

2015
Anti-aversive role of the endocannabinoid system in the periaqueductal gray stimulation model of panic attacks in rats.
    Psychopharmacology, 2015, Volume: 232, Issue:9

    Direct activation of the cannabinoid CB1 receptor in the dorsolateral periaqueductal gray (dlPAG) inhibits anxiety- and panic-related behaviours in experimental animals. It has remained unclear, however, whether the local endocannabinoid signalling is recruited as a protective mechanism against aversive stimuli.. The present study tested the hypothesis that the endocannabinoid system counteracts aversive responses in the dlPAG-stimulation model of panic attacks.. All drugs were infused into the dlPAG of rats. Local chemical stimulation with N-methyl-D-aspartate (NMDA, 1 nmol) was employed to induce panic-like behavioural and cardiovascular responses in freely moving and anaesthetized animals, respectively. The neuronal activity in the dlPAG was investigated by c-Fos immunohistochemistry.. The selective CB1 receptor agonist, ACEA (0.005-0.5 pmol), prevented the NMDA-induced panic-like escape responses. More interestingly, increasing the local levels of endogenous anandamide with a fatty acid amide hydrolase (FAAH) inhibitor, URB597 (0.3-3 nmol), prevented both the behavioural response and the increase in blood pressure induced by NMDA. The effect of URB597 (3 nmol) was reversed by the CB1 receptor antagonist, AM251 (0.1 nmol). Moreover, an otherwise ineffective and sub-threshold dose of NMDA (0.5 nmol) was able to induce a panic-like response if local CB1 receptors were previously blocked by AM251 (0.1 nmol). Finally, URB597 prevented the NMDA-induced neuronal activation of the dlPAG.. The endocannabinoid system in the dlPAG attenuates the behavioural, cellular and cardiovascular consequences of aversive stimuli. This process may be considered for the development of additional treatments against panic and other anxiety-related disorders.

    Topics: Amidohydrolases; Animals; Anxiety; Arachidonic Acids; Behavior, Animal; Benzamides; Carbamates; Disease Models, Animal; Endocannabinoids; Enzyme Inhibitors; Male; N-Methylaspartate; Panic Disorder; Periaqueductal Gray; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1

2015
Attenuation of persistent pain-related behavior by fatty acid amide hydrolase (FAAH) inhibitors in a rat model of HIV sensory neuropathy.
    Neuropharmacology, 2015, Volume: 95

    Distal sensory neuropathies are a hallmark of HIV infections and can result in persistent and disabling pain despite advances in antiretroviral therapies. HIV-sensory neuropathic (HIV-SN) pain may be amenable to cannabinoid treatment, but currently available agonist treatments are limited by untoward side effects and potential for abuse in this patient population. Fatty acid amide hydrolase (FAAH) inhibitors may offer an alternative approach by inhibiting the degradation of endocannabinoids with purportedly fewer untoward CNS side effects. In order to evaluate this potential approach in the management of HIV-SN pain, the recombinant HIV envelope protein gp120 was applied epineurally to the rat sciatic nerve to induce an HIV-SN-like pain syndrome. Two distinct FAAH inhibitory compounds, URB597 and PF-3845 were tested, and contrasted with standard antinociceptive gabapentin or vehicle treatment, for attenuation of tactile allodynia, cold allodynia, and mechanical hyperalgesia. Both FAAH inhibitors markedly reduced cold and tactile allodynia with limited anti-hyperalgesic effects. Peak antinociceptive effects produced by both agents were more modest than gabapentin in reducing tactile allodynia with similar potency ranges. URB597 produced comparable cold anti-allodynic effects to gabapentin, and the effects of both FAAH inhibitors were longer lasting than gabapentin. To assess the contribution of cannabinoid receptors in these antinociceptive effects, CB1 antagonist AM251 or CB2 antagonist SR144528 were tested in conjunction with FAAH inhibitors. Results suggested a contribution of both CB1- and CB2-mediated effects, particularly in reducing tactile allodynia. In summary, these findings support inhibition of endocannabinoid degradation as a promising target for management of disabling persistent HIV-SN pain syndromes.

    Topics: Amidohydrolases; Amines; Analgesics; Animals; Benzamides; Carbamates; Cyclohexanecarboxylic Acids; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Inhibitors; Gabapentin; gamma-Aminobutyric Acid; HIV Envelope Protein gp120; HIV Infections; Hyperalgesia; Male; Nociception; Piperidines; Pyridines; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Recombinant Proteins; Sciatic Neuropathy

2015
Inhibition of anandamide hydrolysis enhances noradrenergic and GABAergic transmission in the prefrontal cortex and basolateral amygdala of rats subjected to acute swim stress.
    Journal of neuroscience research, 2015, Volume: 93, Issue:5

    Limbic forebrain endocannabinoid (eCB) signaling is critically involved in stress integration by modulating neurotransmitters release. The purpose of this study was to examine, by brain microdialysis, the effects of fatty acid amide hydrolase (FAAH) inhibition on noradrenergic and γ-aminobutyric acid (GABA)-ergic neurotransmission in the prefrontal cortex (PFC) and basolateral amygdala (BLA) of rats subjected to a 20-min swim stress. Microdialysis started on stress- and drug-naïve rats that were treated with the FAAH inhibitor URB597 (0.1 or 0.3 mg/kg) 30 min before undergoing the stress procedure. Dialysate samples were collected every 20 min from the beginning of the experiment. Concentrations of noradrenaline (NA) and GABA were determined by HPLC coupled to electrochemical and fluorescence detection, respectively. We found that neither URB597 treatment nor 20 min of swim stress exposure per se altered NA and GABA extracellular levels in PFC or BLA. Interestingly, rats treated with 0.1 mg/kg of URB597 followed by 20 min of stress showed significantly higher NA and GABA levels in PFC and BLA. These effects were absent in rats treated with 0.3 mg/kg URB597, indicating a dose-specific effect. Moreover, we found that the pretreatment with the CB1 receptor antagonist rimonabant blocked the URB597 effects on NA and GABA release in PFC and BLA of animals subjected to forced swimming. The present study might provide an important first step toward understanding the mechanisms through which URB597 modulates stress-induced neuroendocrine secretion and behavioral coping strategies.

    Topics: Analysis of Variance; Animals; Arachidonic Acids; Basolateral Nuclear Complex; Benzamides; Carbamates; Chromatography, High Pressure Liquid; Disease Models, Animal; Endocannabinoids; Extracellular Fluid; gamma-Aminobutyric Acid; Male; Microdialysis; Norepinephrine; Polyunsaturated Alkamides; Prefrontal Cortex; Rats; Rats, Wistar; Stress, Psychological; Swimming

2015
Cannabinoid CB1 receptors in the dorsal hippocampus and prelimbic medial prefrontal cortex modulate anxiety-like behavior in rats: additional evidence.
    Progress in neuro-psychopharmacology & biological psychiatry, 2015, Jun-03, Volume: 59

    Endocannabinoids (ECBs) such as anandamide (AEA) act by activating cannabinoid type 1 (CB1) or 2 (CB2) receptors. The anxiolytic effect of drugs that facilitate ECB effects is associated with increase in AEA levels in several encephalic areas, including the prefrontal cortex (PFC). Activation of CB1 receptors by CB1 agonists injected directly into these areas is usually anxiolytic. However, depending on the encephalic region being investigated and on the stressful experiences, opposite effects were observed, as reported in the ventral HIP. In addition, contradictory results have been reported after CB1 activation in the dorsal HIP (dHIP). Therefore, in the present paper we have attempted to verify if directly interfering with ECB metabolism/reuptake in the prelimbic (PL) portion of the medial PFC (MPFC) and dHIP would produce different effects in two conceptually distinct animal models: the elevated plus maze (EPM) and the Vogel conflict test (VCT). We observed that drugs which interfere with ECB reuptake/metabolism in both the PL and in the dentate gyrus of the dHIP induced anxiolytic-like effect, in both the EPM and in the VCT via CB1 receptors, suggesting that CB1 signaling in these brain regions modulates defensive responses to both innate and learned threatening stimuli. This data further strengthens previous results indicating modulation of hippocampal and MPFC activity via CB1 by ECBs, which could be therapeutically targeted to treat anxiety disorders.

    Topics: Animals; Anxiety; Arachidonic Acids; Benzamides; Carbamates; Disease Models, Animal; Drinking; Drinking Behavior; Electric Stimulation; Enzyme Inhibitors; Hippocampus; Male; Maze Learning; Prefrontal Cortex; Rats; Rats, Wistar; Reaction Time; Receptor, Cannabinoid, CB1; Statistics, Nonparametric; Tail; Time Factors; Vocalization, Animal

2015
Role of endocannabinoid signalling in the dorsolateral periaqueductal grey in the modulation of distinct panic-like responses.
    Journal of psychopharmacology (Oxford, England), 2015, Volume: 29, Issue:3

    Panic attacks, a major feature of panic disorder, can be modelled in rats by exposing animals to stimuli that induce escape reactions, such as the elevated T-maze or the activation of the dorsolateral periaqueductal grey. Since the cannabinoid CB1 receptor modulates various types of aversive responses, this study tested the hypothesis that enhancement of endocannabinoid signalling in the dorsolateral periaqueductal grey inhibits panic-like reactions in rats. Local injection of the CB1 agonist, arachidonoyl 2-Chloroethylamide (0.005-0.5 pmol), attenuated the escape response from the open arm of the elevated T-maze, a panicolytic effect. The anandamide hydrolysis inhibitor, URB597 (0.3-3 nmol), did not induce consistent results. In the test of dorsolateral periaqueductal grey stimulation with d,l-homocysteic acid, arachidonoyl 2-Chloroethylamide, at the lowest dose, attenuated the escape reaction. The highest dose of URB597 also inhibited this response, contrary to the result obtained in the elevated T-maze. This effect was reversed by the CB1 antagonist, AM251 (100 pmol). The present results confirm the anti-aversive property of direct CB1 receptor activation in the dorsolateral periaqueductal grey. The effect of the anandamide hydrolysis inhibitor, however, could be detected only in a model employing direct stimulation of this structure. Altogether, these results suggest that anandamide signalling is recruited only under certain types of aversive stimuli.

    Topics: Animals; Arachidonic Acids; Benzamides; Carbamates; Disease Models, Animal; Dose-Response Relationship, Drug; Endocannabinoids; Escape Reaction; Male; Maze Learning; Panic Disorder; Periaqueductal Gray; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Signal Transduction

2015
A multi-target approach for pain treatment: dual inhibition of fatty acid amide hydrolase and TRPV1 in a rat model of osteoarthritis.
    Pain, 2015, Volume: 156, Issue:5

    The pharmacological inhibition of anandamide (AEA) hydrolysis by fatty acid amide hydrolase (FAAH) attenuates pain in animal models of osteoarthritis (OA) but has failed in clinical trials. This may have occurred because AEA also activates transient receptor potential vanilloid type 1 (TRPV1), which contributes to pain development. Therefore, we investigated the effectiveness of the dual FAAH-TRPV1 blocker OMDM-198 in an MIA-model of osteoarthritic pain. We first investigated the MIA-induced model of OA by (1) characterizing the pain phenotype and degenerative changes within the joint using X-ray microtomography and (2) evaluating nerve injury and inflammation marker (ATF-3 and IL-6) expression in the lumbar dorsal root ganglia of osteoarthritic rats and differences in gene and protein expression of the cannabinoid CB1 receptors FAAH and TRPV1. Furthermore, we compared OMDM-198 with compounds acting exclusively on FAAH or TRPV1. Osteoarthritis was accompanied by the fragmentation of bone microstructure and destroyed cartilage. An increase of the mRNA levels of ATF3 and IL-6 and an upregulation of AEA receptors and FAAH in the dorsal root ganglia were observed. OMDM-198 showed antihyperalgesic effects in the OA model, which were comparable with those of a selective TRPV1 antagonist, SB-366,791, and a selective FAAH inhibitor, URB-597. The effect of OMDM-198 was attenuated by the CB1 receptor antagonist, AM-251, and by the nonpungent TRPV1 agonist, olvanil, suggesting its action as an "indirect" CB1 agonist and TRPV1 antagonist. These results suggest an innovative strategy for the treatment of OA, which may yield more satisfactory results than those obtained so far with selective FAAH inhibitors in human OA.

    Topics: Activating Transcription Factor 3; Amidohydrolases; Anilides; Animals; Arachidonic Acids; Benzamides; Capsaicin; Carbamates; Cinnamates; Disease Models, Animal; Endocannabinoids; Ganglia, Spinal; Gene Expression; Hyperalgesia; Inflammation; Interleukin-6; Lumbar Vertebrae; Male; Osteoarthritis; Pain; Pain Management; Pain Measurement; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; TRPV Cation Channels

2015
Cannabinoid receptor agonist WIN55,212-2 and fatty acid amide hydrolase inhibitor URB597 suppress chronic cerebral hypoperfusion-induced neuronal apoptosis by inhibiting c-Jun N-terminal kinase signaling.
    Neuroscience, 2015, Aug-20, Volume: 301

    The endocannabinoid system (ECS) has therapeutic potential for treating chronic cerebral hypoperfusion (CCH)-induced cerebral diseases. This study investigated the protective effects of two ECS compounds, cannabinoid receptor agonist WIN55,212-2 (WIN) and fatty acid amide hydrolase inhibitor URB597 (URB) on CCH-induced neuronal apoptosis in vivo. CCH was induced in male Sprague-Dawley rats by bilateral common carotid artery occlusion (BCCAo); the rats were then treated with WIN or URB for 12weeks and their spatial learning and memory abilities were assessed using the Morris water maze. Changes in neuronal number were examined by labeling neurons with an antibody against the neuronal nuclei antigen, and apoptosis of cortical and hippocampal CA1 neurons was detected by terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling. The expression of B cell lymphoma (Bcl)-2, Bcl-2-associated X protein (Bax), and activated caspase-3 as well as mitogen-activated protein kinases including extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), p38, phosphorylated (p-)ERK, p-JNK, and p-P38 was examined by Western blotting. Rats treated with WIN or URB showed better learning and memory performance than controls. The neuroprotective effects of URB were greater than those of WIN, and co-administration of WIN and URB had a synergistic effect. In addition, WIN and URB blocked JNK phosphorylation as well as the decrease in Bcl-2/Bax ratio and caspase-3 activation induced by CCH, implying that these agents modulate neuronal survival. Moreover, the selective JNK inhibitor SP600125 improved mitochondrial membrane dysfunction and blocked neuronal apoptosis induced by JNK-dependent Bcl-2 signaling. WIN and URB enhanced the effects of SP600125, implying that they may exert anti-apoptotic effects in part by inhibiting a non-nuclear JNK pathway. These findings indicate that WIN and URB promote neuronal survival and may potentially be used to protect neurons against chronic ischemic insults.

    Topics: Animals; Apoptosis; Benzamides; Benzoxazines; Calcium Channel Blockers; Carbamates; Carotid Stenosis; Cerebral Cortex; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Enzyme Inhibitors; JNK Mitogen-Activated Protein Kinases; Male; Maze Learning; Morpholines; Naphthalenes; Neurons; Phosphopyruvate Hydratase; Rats; Rats, Sprague-Dawley; Signal Transduction; Time Factors

2015
Inhibition of FAAH reduces nitroglycerin-induced migraine-like pain and trigeminal neuronal hyperactivity in mice.
    European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology, 2015, Volume: 25, Issue:8

    There is evidence to suggest that a dysregulation of endocannabinoid signaling may contribute to the etiology and pathophysiology of migraine. Thus, patients suffering from chronic migraine or medication overuse headache showed alterations in the activity of the arachidonoylethanolamide (AEA) degrading enzyme fatty acid amide hydrolase (FAAH) and a specific AEA membrane transporter, alongside with changes in AEA levels. The precise role of different endocannabinoid system components is, however, not clear. We have therefore investigated mice with a genetic deletion of the two main cannabinoid receptors CB1 and CB2, or the main endocannabinoid degrading enzymes, FAAH and monoacylglycerol lipase (MAGL), which degrades 2-arachidonoylglycerol (2-AG), in a nitroglycerine-induced animal model of migraine. We found that nitroglycerin-induced mechanical allodynia and neuronal activation of the trigeminal nucleus were completely abolished in FAAH-deficient mice. To validate these results, we used two structurally different FAAH inhibitors, URB597 and PF3945. Both inhibitors also dose-dependently blocked nitroglycerin-induced hyperalgesia and the activation of trigeminal neurons. The effects of the genetic deletion of pharmacological blockade of FAAH are mediated by CB1 receptors, because they were completely disrupted with the CB1 antagonist rimonabant. These results identify FAAH as a target for migraine pharmacotherapy.

    Topics: Amidohydrolases; Analgesics; Animals; Arachidonic Acids; Benzamides; Cannabinoid Receptor Antagonists; Carbamates; Disease Models, Animal; Dose-Response Relationship, Drug; Endocannabinoids; Enzyme Inhibitors; Hyperalgesia; Male; Mice, Inbred C57BL; Mice, Knockout; Migraine Disorders; Monoacylglycerol Lipases; Nitroglycerin; Pain Measurement; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; Rimonabant; Touch; Trigeminal Nuclei

2015
Endocannabinoid-mediated improvement on a test of aversive memory in a mouse model of fragile X syndrome.
    Behavioural brain research, 2015, Sep-15, Volume: 291

    Silencing the gene FMR1 in fragile X syndrome (FXS) with consequent loss of its protein product, FMRP, results in intellectual disability, hyperactivity, anxiety, seizure disorders, and autism-like behavior. In a mouse model (Fmr1 knockout (KO)) of FXS, a deficit in performance on the passive avoidance test of learning and memory is a robust phenotype. We report that drugs acting on the endocannabinoid (eCB) system can improve performance on this test. We present three lines of evidence: (1) Propofol (reported to inhibit fatty acid amide hydrolase (FAAH) activity) administered 30 min after training on the passive avoidance test improved performance in Fmr1 KO mice but had no effect on wild type (WT). FAAH catalyzes the metabolism of the eCB, anandamide, so its inhibition should result in increased anandamide levels. (2) The effect of propofol was blocked by prior administration of the cannabinoid receptor 1 antagonist AM-251. (3) Treatment with the FAAH inhibitor, URB-597, administered 30 min after training on the passive avoidance test also improved performance in Fmr1 KO mice but had no effect on WT. Our results indicate that the eCB system is involved in FXS and suggest that the eCB system is a promising target for treatment of FXS.

    Topics: Amidohydrolases; Animals; Anxiety; Arachidonic Acids; Avoidance Learning; Benzamides; Cannabinoid Receptor Antagonists; Carbamates; Disease Models, Animal; Endocannabinoids; Enzyme Inhibitors; Fragile X Mental Retardation Protein; Fragile X Syndrome; Male; Memory; Mice, Inbred C57BL; Mice, Knockout; Piperidines; Polyunsaturated Alkamides; Propofol; Pyrazoles; Receptor, Cannabinoid, CB1; Receptors, GABA-A; Social Behavior

2015
Switching cannabinoid response from CB(2) agonists to FAAH inhibitors.
    Bioorganic & medicinal chemistry letters, 2014, Mar-01, Volume: 24, Issue:5

    A series of 3-carboxamido-5-aryl-isoxazoles designed as CB2 agonists were evaluated as FAAH inhibitors. The pharmacological results led to identify structure-activity relationships enabling to switch cannabinoid response from CB2 agonists to FAAH inhibitors. Two compounds were selected for their FAAH and/or CB2 activity, and evaluated in a colitis model for their anti-inflammatory activity. Results showed that compounds 10 and 11 inhibit the development of DSS-induced acute colitis in mice and then, are interesting leads to explore new drug candidates for IBD.

    Topics: Adamantane; Amidohydrolases; Animals; Anti-Inflammatory Agents; Body Weight; Cannabinoids; Colitis; Disease Models, Animal; Enzyme Inhibitors; Isoxazoles; Male; Mice; Mice, Inbred C57BL; Protein Binding; Receptor, Cannabinoid, CB2; Structure-Activity Relationship

2014
Actions of the dual FAAH/MAGL inhibitor JZL195 in a murine inflammatory pain model.
    Neuropharmacology, 2014, Volume: 81

    The analgesic efficacy of cannabinoids in chronic pain models is limited by side-effects. It has been proposed that this might be overcome by using agents which indirectly activate the endocannabinoid system. We examined the analgesic and side-effect profile of the dual FAAH/MAGL inhibitor JZL195 in an inflammatory pain model. The effect of systemic injections of a range of doses of JZL195 and the pan-cannabinoid receptor agonist WIN55212 were performed 1 day following intraplantar injection of CFA in C57BL/6 mice. JZL195 and WIN55212 both reduced mechanical allodynia and thermal hyperalgesia, and produced catalepsy and sedation in a dose dependent manner. Unlike WIN55212, JZL195 reduced allodynia at doses below those at which side-effects were observed. The effects of JZL195 and WIN55212 were abolished by co-application with the CB1 antagonist AM251. The CB2 antagonist also reduced the JZL195 anti-allodynia, and reversed the WIN55212 anti-allodynia. The reduction in allodynia produced by JZL195 was greater than that produced individually by the FAAH and MAGL inhibitors, URB597 and JZL184. These findings suggest that JZL195 reduces inflammation induced allodynia at doses below those which produce side-effects, and displays greater efficacy that FAAH or MAGL inhibitors. Thus, dual FAAH/MAGL inhibition has the potential to alleviate inflammatory pain with reduced cannabinoid-like side-effects.

    Topics: Amidohydrolases; Analgesics; Analysis of Variance; Animals; Arthritis, Experimental; Benzamides; Benzoxazines; Carbamates; Disease Models, Animal; Dose-Response Relationship, Drug; Exploratory Behavior; Male; Mice; Mice, Inbred C57BL; Morpholines; Motor Activity; Naphthalenes; Pain; Pain Measurement; Piperazines; Piperidines; Pyrazoles; Time Factors

2014
Increased angiotensin II contraction of the uterine artery at early gestation in a transgenic model of hypertensive pregnancy is reduced by inhibition of endocannabinoid hydrolysis.
    Hypertension (Dallas, Tex. : 1979), 2014, Volume: 64, Issue:3

    Increased vascular sensitivity to angiotensin II (Ang II) is a marker of a hypertensive human pregnancy. Recent evidence of interactions between the renin-angiotensin system and the endocannabinoid system suggests that anandamide and 2-arachidonoylglycerol may modulate Ang II contraction. We hypothesized that these interactions may contribute to the enhanced vascular responses in hypertensive pregnancy. We studied Ang II contraction in isolated uterine artery (UA) at early gestation in a rat model that mimics many features of preeclampsia, the transgenic human angiotensinogen×human renin (TgA), and control Sprague-Dawley rats. We determined the role of the cannabinoid receptor 1 by blockade with SR171416A, and the contribution of anandamide and 2-arachidonoylglycerol degradation to Ang II contraction by inhibiting their hydrolyzing enzyme fatty acid amide hydrolase (with URB597) or monoacylglycerol lipase (with JZL184), respectively. TgA UA showed increased maximal contraction and sensitivity to Ang II that was inhibited by indomethacin. Fatty acid amide hydrolase blockade decreased Ang IIMAX in Sprague-Dawley UA, and decreased both Ang IIMAX and sensitivity in TgA UA. Monoacylglycerol lipase blockade had no effect on Sprague-Dawley UA and decreased Ang IIMAX and sensitivity in TgA UA. Blockade of the cannabinoid receptor 1 in TgA UA had no effect. Immunolocalization of fatty acid amide hydrolase and monoacylglycerol lipase showed a similar pattern between groups; fatty acid amide hydrolase predominantly localized in endothelium and monoacylglycerol lipase in smooth muscle cells. We demonstrated an increased Ang II contraction in TgA UA before initiation of the hypertensive phenotype. Anandamide and 2-arachidonoylglycerol reduced Ang II contraction in a cannabinoid receptor 1-independent manner. These renin-angiotensin system-endocannabinoid system interactions may contribute to the enhanced vascular reactivity in early stages of hypertensive pregnancy.

    Topics: Amidohydrolases; Angiotensin II; Animals; Arachidonic Acids; Benzamides; Benzodioxoles; Blood Pressure; Carbamates; Disease Models, Animal; Endocannabinoids; Female; Glycerides; Humans; Hydrolysis; Hypertension, Pregnancy-Induced; Male; Monoglycerides; Piperidines; Polyunsaturated Alkamides; Pregnancy; Pregnancy, Animal; Rats; Rats, Sprague-Dawley; Rats, Transgenic; Uterine Artery; Vasoconstriction

2014
Role of the basolateral amygdala in mediating the effects of the fatty acid amide hydrolase inhibitor URB597 on HPA axis response to stress.
    European neuropsychopharmacology : the journal of the European College of Neuropsychopharmacology, 2014, Volume: 24, Issue:9

    The endocannabinoid system is an important regulator of neuroendocrine and behavioral adaptation in stress related disorders thus representing a novel potential therapeutic target. The aim of this study was to determine the effects of the fatty acid amide hydrolase (FAAH) inhibitor URB597 on stress mediators of HPA axis and to study the role of the basolateral amygdala (BLA) in responses to forced swim stress. Systemic administration of URB597 (0.1 and 0.3mg/kg) reduced the forced swim stress-induced activation of HPA axis. More specifically, URB597 decreased stress-induced corticotropin-releasing hormone (CRH) mRNA expression in the paraventricular nucleus (PVN) of the hypothalamus, and pro-opiomelanocortin (POMC) mRNA expression dose-dependently in pituitary gland without affecting plasma corticosterone levels. URB597 treatment also attenuated stress-induced neuronal activation of the amygdala and PVN, and increased neuronal activation in the locus coeruleus (LC) and nucleus of solitary tract (NTS). Injection of the CB1 receptor antagonist AM251 (1ng/side) in the BLA significantly attenuated URB597-mediated effects in the PVN and completely blocked those induced in the BLA. These results suggest that the BLA is a key structure involved in the anti-stress effects of URB597, and support the evidence that enhancement of endogenous cannabinoid signaling by inhibiting FAAH represents a potential therapeutic strategy for the management of stress-related disorders.

    Topics: Analysis of Variance; Animals; Basolateral Nuclear Complex; Benzamides; Carbamates; Corticotropin-Releasing Hormone; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Inhibitors; Gene Expression Regulation; Hypothalamo-Hypophyseal System; Male; Paraventricular Hypothalamic Nucleus; Piperidines; Pituitary-Adrenal System; Pro-Opiomelanocortin; Pyrazoles; Rats; RNA, Messenger; Stress, Psychological; Swimming; Time Factors

2014
Chronic stimulation of the tone of endogenous anandamide reduces cue- and stress-induced relapse in rats.
    The international journal of neuropsychopharmacology, 2014, Dec-05, Volume: 18, Issue:1

    The endogenous cannabinoid system plays an important role in motivation, stress, and drug abuse. Pharmacologically, the endocannabinoid system can be stimulated by either agonists of CB1 receptors or inhibition of metabolic degradation of endogenous cannabinoids and consequent increases in their brain levels.. Here, we investigated whether chronic administration during a period of withdrawal of the fatty acid amide hydrolase inhibitor URB597, which increases anandamide levels, would decrease the risks of relapse to cocaine seeking. Rats were allowed to self-administer cocaine and then they underwent forced withdrawal for 28 days, during which they were treated with URB597 or vehicle. One day after the last injection, we investigated cocaine seeking in one 6h extinction session and relapse triggered by re-exposure to drug-associated cues or a pharmacological stressor.. We found that administration of URB597 significantly decreases cocaine-seeking behavior and cue- and stress-induced relapse.. These results suggest that stimulation of the endocannabinoid system could be helpful to prevent relapse to cocaine addiction.

    Topics: Amidohydrolases; Animals; Arachidonic Acids; Benzamides; Carbamates; Cocaine; Cocaine-Related Disorders; Cues; Disease Models, Animal; Dopamine Uptake Inhibitors; Drug-Seeking Behavior; Endocannabinoids; Enzyme Inhibitors; Male; Polyunsaturated Alkamides; Rats, Sprague-Dawley; Recurrence; Self Administration; Stress, Physiological; Yohimbine

2014
Increasing endocannabinoid levels in the ventral pallidum restore aberrant dopamine neuron activity in the subchronic PCP rodent model of schizophrenia.
    The international journal of neuropsychopharmacology, 2014, Oct-31, Volume: 18, Issue:1

    Schizophrenia is a debilitating disorder that affects 1% of the US population. While the exogenous administration of cannabinoids such as tetrahydrocannabinol is reported to exacerbate psychosis in schizophrenia patients, augmenting the levels of endogenous cannabinoids has gained attention as a possible alternative therapy to schizophrenia due to clinical and preclinical observations. Thus, patients with schizophrenia demonstrate an inverse relationship between psychotic symptoms and levels of the endocannabinoid anandamide. In addition, increasing endocannabinoid levels (by blockade of enzymatic degradation) has been reported to attenuate social withdrawal in a preclinical model of schizophrenia. Here we examine the effects of increasing endogenous cannabinoids on dopamine neuron activity in the sub-chronic phencyclidine (PCP) model. Aberrant dopamine system function is thought to underlie the positive symptoms of schizophrenia.. Using in vivo extracellular recordings in chloral hydrate-anesthetized rats, we now demonstrate an increase in dopamine neuron population activity in PCP-treated rats.. Interestingly, endocannabinoid upregulation, induced by URB-597, was able to normalize this aberrant dopamine neuron activity. Furthermore, we provide evidence that the ventral pallidum is the site where URB-597 acts to restore ventral tegmental area activity.. Taken together, we provide preclinical evidence that augmenting endogenous cannabinoids may be an effective therapy for schizophrenia, acting in part to restore ventral pallidal activity.

    Topics: Animals; Basal Forebrain; Benzamides; Carbamates; Central Nervous System Agents; Disease Models, Animal; Dopaminergic Neurons; Endocannabinoids; Hippocampus; Male; Microelectrodes; Phencyclidine; Rats, Sprague-Dawley; Schizophrenia; Sodium Channel Blockers; Tetrodotoxin; Ventral Tegmental Area

2014
The fatty acid amide hydrolase inhibitor, URB597, promotes retinal ganglion cell neuroprotection in a rat model of optic nerve axotomy.
    Neuropharmacology, 2013, Volume: 72

    The endocannabinoid, N-arachidonoylethanolamine (AEA), is degraded by the enzyme fatty acid amide hydrolase (FAAH). This study examined whether the FAAH inhibitor, URB597, increases retinal ganglion cell (RGC) survival following optic nerve axotomy in young and aged animals. URB597 alone, or together with either a CB1 or CB2 receptor antagonist, was administered daily for 1 or 2 weeks post-axotomy. Histological assessment of retinas indicated that URB597 increased RGC survival in young retina at 1 and 2 weeks post-axotomy. The increase in RGC survival at 2 weeks was accompanied by a reduction in phagocytic microglia. The CB1 antagonist, AM281, but not the CB2 antagonist, AM630, ablated URB597-mediated RGC neuroprotection. CB1 or CB2 antagonism increased phagocytic microglia in URB597 and vehicle-treated animals. In aged animals, URB597 increased RGC survival at 1 week, but not at 2 weeks post-axotomy and had no effect on microglia. Retinal Iba-1 positive microglia were also decreased in URB597-treated axotomized young animals and this decrease was mitigated by CB1 but not CB2 antagonism. As seen with phagocytotic microglia, the CB2 antagonist, AM630, increased Iba-1 positive microglia in the absence of URB597 treatment. Measurement of retinal endocannabinoid levels in URB597-treated animals at 2 weeks post-axotomy revealed a significant increase in AEA levels, accompanied by a decrease in the AEA metabolite, N-arachidonoyl glycine, in young animals but not aged animals. 2-arachidonoylglycerol levels were similar across all experimental groups. These data demonstrate that URB597-mediated retinal neuroprotective effects are mediated primarily through CB1 receptors and that URB597 neuroprotective efficacy declines with age.

    Topics: Age Factors; Amidohydrolases; Animals; Axotomy; Benzamides; Carbamates; Cell Count; Disease Models, Animal; Endocannabinoids; Indoles; Microglia; Morpholines; Neural Pathways; Neuroprotective Agents; Optic Nerve Diseases; Pyrazoles; Rats; Rats, Inbred F344; Retina; Retinal Ganglion Cells; Stilbamidines

2013
Increased anandamide uptake by sensory neurons contributes to hyperalgesia in a model of cancer pain.
    Neurobiology of disease, 2013, Volume: 58

    Opioids do not effectively manage pain in many patients with advanced cancer. Because anandamide (AEA) activation of cannabinoid type-1 receptors (CB1R) on nociceptors reduces nociception, manipulation of AEA metabolism in the periphery may be an effective alternative or adjuvant therapy in the management of cancer pain. AEA is hydrolyzed by the intracellular enzyme fatty acid amide hydrolase (FAAH), and this enzyme activity contributes to uptake of AEA into neurons and to reduction of AEA available to activate CB1R. We used an in vitro preparation of adult murine dorsal root ganglion (DRG) neurons co-cultured with fibrosarcoma cells to investigate how tumors alter the uptake of AEA into neurons. Evidence that the uptake of [(3)H]AEA into dissociated DRG cells in the co-culture model mimicked the increase in uptake that occurred in DRG cells from tumor-bearing mice supported the utility of the in vitro model to study AEA uptake. Results with the fluorescent AEA analog CAY10455 confirmed that an increase in uptake in the co-culture model occurred in neurons. One factor that contributed to the increase in [(3)H]AEA uptake was an increase in total cellular cholesterol in the cancer condition. Treatment with the FAAH inhibitor URB597 reduced CAY10455 uptake in the co-culture model to the level observed in DRG neurons maintained in the control condition (i.e., in the absence of fibrosarcoma cells), and this effect was paralleled by OMDM-1, an inhibitor of AEA uptake, at a concentration that had no effect on FAAH activity. Maximally effective concentrations of the two drugs together produced a greater reduction than was observed with each drug alone. Treatment with BMS309403, which competes for AEA binding to fatty acid binding protein-5, mimicked the effect of OMDM-1 in vitro. Local injection of OMDM-1 reduced hyperalgesia in vivo in mice with unilateral tumors in and around the calcaneous bone. Intraplantar injection of OMDM-1 (5μg) into the tumor-bearing paw reduced mechanical hyperalgesia through a CB1R-dependent mechanism and also reduced a spontaneous nocifensive behavior. The same dose reduced withdrawal responses evoked by suprathreshold mechanical stimuli in naive mice. These data support the conclusion that OMDM-1 inhibits AEA uptake by a mechanism that is independent of inhibition of FAAH and provide a rationale for the development of peripherally restricted drugs that decrease AEA uptake for the management of cancer pain.

    Topics: Animals; Arachidonic Acids; Benzamides; Brain Neoplasms; Cannabinoid Receptor Antagonists; Carbamates; Cells, Cultured; Coculture Techniques; Disease Models, Animal; Endocannabinoids; Enzyme Inhibitors; Fibrosarcoma; Fluorescent Dyes; Ganglia, Spinal; Hyperalgesia; Indoles; Lactones; Male; Mice; Mice, Inbred C3H; Pain; Pain Threshold; Polyunsaturated Alkamides; Sensory Receptor Cells; Statistics, Nonparametric; Tritium

2013
Fatty acid amide hydrolase deficiency enhances intraplaque neutrophil recruitment in atherosclerotic mice.
    Arteriosclerosis, thrombosis, and vascular biology, 2013, Volume: 33, Issue:2

    Endocannabinoid levels are elevated in human and mouse atherosclerosis, but their causal role is not well understood. Therefore, we studied the involvement of fatty acid amide hydrolase (FAAH) deficiency, the major enzyme responsible for endocannabinoid anandamide degradation, in atherosclerotic plaque vulnerability.. We assessed atherosclerosis in apolipoprotein E-deficient (ApoE(-/-)) and ApoE(-/-)FAAH(-/-) mice. Before and after 5, 10, and 15 weeks on high-cholesterol diet, we analyzed weight, serum cholesterol, and endocannabinoid levels, and atherosclerotic lesions in thoracoabdominal aortas and aortic sinuses. Serum levels of FAAH substrates anandamide, palmitoylethanolamide (PEA), and oleoylethanolamide (OEA) were 1.4- to 2-fold higher in case of FAAH deficiency. ApoE(-/-)FAAH(-/-) mice had smaller plaques with significantly lower content of smooth muscle cells, increased matrix metalloproteinase-9 expression, and neutrophil content. Circulating and bone marrow neutrophil counts were comparable between both genotypes, whereas CXC ligand1 levels were locally elevated in aortas of FAAH-deficient mice. We observed enhanced recruitment of neutrophils, but not monocytes, to large arteries of ApoE(-/-) mice treated with FAAH inhibitor URB597. Spleens of ApoE(-/-)FAAH(-/-) mice had reduced CD4+FoxP3+regulatory T-cell content, and in vitro stimulation of splenocytes revealed significantly elevated interferon-γ and tumor necrosis factor-α production in case of FAAH deficiency.. Increased anandamide and related FAAH substrate levels are associated with the development of smaller atherosclerotic plaques with high neutrophil content, accompanied by an increased proinflammatory immune response.

    Topics: Amides; Amidohydrolases; Animals; Aorta; Aortic Diseases; Apolipoproteins E; Arachidonic Acids; Atherosclerosis; Benzamides; Carbamates; Cells, Cultured; Chemokine CXCL1; Cholesterol; Disease Models, Animal; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Genotype; Inflammation Mediators; Interferon-gamma; Matrix Metalloproteinase 9; Mice; Mice, Inbred C57BL; Mice, Knockout; Muscle, Smooth, Vascular; Neutrophil Infiltration; Neutrophils; Oleic Acids; Palmitic Acids; Phenotype; Plaque, Atherosclerotic; Polyunsaturated Alkamides; Spleen; T-Lymphocytes, Regulatory; Time Factors; Tumor Necrosis Factor-alpha

2013
Effects of cannabinoids and endocannabinoid hydrolysis inhibition on pentylenetetrazole-induced seizure and electroencephalographic activity in rats.
    Epilepsy research, 2013, Volume: 104, Issue:3

    Cannabinoids and drugs that increase endocannabinoid levels inhibit neuronal excitability and restrain epileptic seizures through CB1 receptor activation. Nevertheless, the results have not been entirely consistent, since pro-convulsant effects have also been reported. The present study aimed to further investigate the effects of cannabinoid-related compounds on seizures induced by pentylenetetrazole (PTZ) in rats. Video-EEG recordings were used to determine both electrographic and behavioral thresholds to ictal activity. The animals received injections of WIN-55,212-2 (0.3-3 mg/kg, non-selective) or ACEA (1-4 mg/kg, CB1-selective), two synthetic cannabinoids, or URB-597 (0.3-3 mg/kg), an anandamide-hydrolysis inhibitor (FAAH enzyme inhibitor), followed by PTZ. Both WIN-55,212-2 (1 mg/kg) and ACEA (1-4 mg/kg) reduced the threshold for myoclonic seizures and enhanced epileptiform EEG activity, typical pro-convulsive effects. On the contrary, URB-597 (1 mg/kg) had an anti-convulsive effect, as it increased the threshold for the occurrence of minimal seizures and reduced EEG epileptiform activity. None of the drugs tested altered the tonic-clonic maximal seizure threshold. These data suggest that the effects of CB1 signaling upon seizure activity may depend on how this receptor is activated. Contrary to direct agonists, drugs that increase anandamide levels seem to promote an optimal tonus and represent a promising strategy for treating myoclonic seizures.

    Topics: Animals; Benzamides; Benzoxazines; Cannabinoids; Carbamates; Convulsants; Disease Models, Animal; Electroencephalography; Endocannabinoids; Hydrolysis; Male; Morpholines; Naphthalenes; Pentylenetetrazole; Rats; Rats, Wistar; Seizures

2013
Inhibition of endocannabinoid degradation in experimental endotoxemia reduces leukocyte adhesion and improves capillary perfusion in the gut.
    Journal of basic and clinical physiology and pharmacology, 2013, Volume: 24, Issue:1

    Changes in leukocyte-endothelial and microvascular perfusion are hallmark events in inflammation. Thus, protection of the intestinal microcirculation represents a pivotal therapeutic target in systemic inflammation and sepsis. The endocannabinoid system (ECS) modulates a number of critical homeostatic functions and has been associated with anti-inflammatory responses. Our study aimed to examine intestinal leukocyte adhesion and capillary perfusion following selective inhibition of the endocannabinoid degradation enzyme, fatty acid amide hydrolase (FAAH), in experimental sepsis (endotoxemia).. Five groups of rats were used: controls, endotoxemia [lipopolysaccharide (LPS)], FAAH inhibitor URB597 (0.3 mg/kg)+LPS, URB597 (0.6 mg/kg)+LPS, and URB597 (0.6 mg/kg)+cannabinoid 2 receptor (CB2R) antagonist (AM630)+LPS. After 2 h, intravital microscopy was performed to quantify intestinal leukocyte recruitment and functional capillary density (FCD), as well as macrohemodynamic monitoring and histological examinations.. LPS induced a significant increase in leukocyte adhesion in collecting and postcapillary submucosal venules and a decrease in intestinal FCD. URB597 pretreatment prevented the LPS-induced increase in leukocyte adhesion in intestinal venules and a decrease in intestinal FCD. The administration of the CB2R inhibitor, AM630, with URB597 reversed the protective effects of URB597 on the LPS-induced increase in leukocyte adhesion in intestinal venules, but not URB597's effect on the intestinal FCD.. FAAH inhibition prevents the LPS-induced increase in leukocyte adhesion and improves the capillary perfusion of the gut. This might be mediated in part by CB2R activation. Our study encourages further investigation into the therapeutic potential of drugs targeting the ECS in sepsis.

    Topics: Amidohydrolases; Animals; Benzamides; Cannabinoid Receptor Antagonists; Capillaries; Carbamates; Cell Adhesion; Disease Models, Animal; Endocannabinoids; Endotoxemia; Indoles; Intestinal Mucosa; Intestines; Leukocytes; Lipopolysaccharides; Male; Rats; Rats, Inbred Lew; Receptor, Cannabinoid, CB2

2013
L-type calcium channel mediates anticonvulsant effect of cannabinoids in acute and chronic murine models of seizure.
    Neurochemical research, 2012, Volume: 37, Issue:2

    The anticonvulsant activities of cannabinoid compounds have been shown in various models of seizure and epilepsy. At least, part of antiseizure effects of cannabinoid compounds is mediated through calcium (Ca(2+)) channels. The L-type Ca(2+) channels have been shown to be important in various epilepsy models. However, there is no data regarding the role of L-type Ca(2+) channels in protective action of cannabinoids on acute and chronic models of seizure. In this study, the effects of cannabinoid compounds and L-type Ca(2+) channels blockers, either alone or in combination were investigated using acute model of pentylenetetrazole (PTZ)-induced seizure in mice and chronic model electrical kindling of amygdala in rats. Pretreatment of mice with both cannabinoid CB1 receptor agonist arachidonyl-2'-chloroethylamide (ACEA) and endocannabinoid degradating enzyme inhibitor cyclohexylcarbamic acid 3'-carbamoyl-biphenyl-3-yl ester (URB597) produced a protective effect against PTZ-induced seizure. Administration of various doses of the two L-type Ca(2+) channel blockers verapamil and diltiazem did not alter PTZ-induced seizure threshold. However, co-administration of verapamil and either ACEA or URB597 attenuated the protective effect of cannabinoid compounds against PTZ-induced seizure. Also, pretreatment of mice with diltiazem blocked the anticonvulsant activity of both ACEA and URB597. Moreover, (R)-(+)-[2,3-dihydro-5-methyl-3[(4-morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazinyl]-(1-naphthalenyl) methanone mesylate (WIN55,212-2), the non-selective cannabinoid CB1 and CB2 receptor agonist showed anticonvulsant effect in amygdala-kindled rats. However, co-administration of WIN55,212-2 and verapamil attenuated the protective properties of WIN55,212-2. Our results showed that the anticonvulsant activity of cannabinoid compounds is mediated, at least in part, by L-type Ca(2+) channels in these two models of convulsion and epilepsy.

    Topics: Acute Disease; Animals; Anticonvulsants; Benzamides; Benzoxazines; Calcium Channels, L-Type; Cannabinoids; Carbamates; Chronic Disease; Diltiazem; Disease Models, Animal; Kindling, Neurologic; Male; Mice; Morpholines; Naphthalenes; Rats; Rats, Wistar; Seizures; Verapamil

2012
Peripheral FAAH inhibition causes profound antinociception and protects against indomethacin-induced gastric lesions.
    Pharmacological research, 2012, Volume: 65, Issue:5

    Fatty-acid amide hydrolase (FAAH) catalyzes the intracellular hydrolysis of the endocannabinoid anandamide and other bioactive lipid amides. In the present study, we conducted a comparative characterization of the effects of the newly identified brain-impermeant FAAH inhibitor, URB937 ([3-(3-carbamoylphenyl)-4-hydroxy-phenyl] N-cyclohexylcarbamate), in various rodent models of acute and persistent pain. When administered by the oral route in mice, URB937 was highly active (median effective dose, ED(50), to inhibit liver FAAH activity: 0.3mgkg(-1)) and had a bioavailability of 5.3%. The antinociceptive effects of oral URB937 were investigated in mouse models of acute inflammation (carrageenan), peripheral nerve injury (chronic sciatic nerve ligation) and arthritis (complete Freund's adjuvant). In all models, URB937 was as effective or more effective than standard analgesic and anti-inflammatory drugs (indomethacin, gabapentin, dexamethasone) and reversed pain-related responses (mechanical hyperalgesia, thermal hyperalgesia, and mechanical allodynia) in a dose-dependent manner. ED(50) values ranged from 0.2 to 10mgkg(-1), depending on model and readout. Importantly, URB937 was significantly more effective than two global FAAH inhibitors, URB597 and PF-04457845, in the complete Freund's adjuvant model. The effects of a combination of URB937 with the non-steroidal anti-inflammatory agent, indomethacin, were examined in the carrageenan and chronic sciatic nerve ligation models. Isobolographic analyses showed that the two compounds interacted synergistically to attenuate pain-related behaviors. Furthermore, URB937 reduced the number and severity of gastric lesions produced by indomethacin, while exerting no ulcerogenic effect when administered alone. The results indicate that the peripheral FAAH inhibitor URB937 is more effective than globally active FAAH inhibitors at inhibiting inflammatory pain. Our findings further suggest that FAAH and cyclooxygenase inhibitors interact functionally in peripheral tissues, to either enhance or hinder each other's actions.

    Topics: Amidohydrolases; Analgesics; Animals; Anti-Inflammatory Agents, Non-Steroidal; Arthritis, Experimental; Benzamides; Cannabinoids; Carbamates; Disease Models, Animal; Enzyme Inhibitors; Hyperalgesia; Indomethacin; Male; Mice; Pain; Pyridazines; Sciatic Nerve; Stomach Ulcer; Urea

2012
The association of N-palmitoylethanolamine with the FAAH inhibitor URB597 impairs melanoma growth through a supra-additive action.
    BMC cancer, 2012, Mar-19, Volume: 12

    The incidence of melanoma is considerably increasing worldwide. Frequent failing of classical treatments led to development of novel therapeutic strategies aiming at managing advanced forms of this skin cancer. Additionally, the implication of the endocannabinoid system in malignancy is actively investigated.. We investigated the cytotoxicity of endocannabinoids and their hydrolysis inhibitors on the murine B16 melanoma cell line using a MTT test. Enzyme and receptor expression was measured by RT-PCR and enzymatic degradation of endocannabinoids using radiolabeled substrates. Cell death was assessed by Annexin-V/Propidium iodine staining. Tumors were induced in C57BL/6 mice by s.c. flank injection of B16 melanoma cells. Mice were injected i.p. for six days with vehicle or treatment, and tumor size was measured each day and weighted at the end of the treatment. Haematoxylin-Eosin staining and TUNEL assay were performed to quantify necrosis and apoptosis in the tumor and endocannabinoid levels were quantified by HPLC-MS. Tube formation assay and CD31 immunostaining were used to evaluate the antiangiogenic effects of the treatments.. The N-arachidonoylethanolamine (anandamide, AEA), 2-arachidonoylglycerol and N- palmitoylethanolamine (PEA) reduced viability of B16 cells. The association of PEA with the fatty acid amide hydrolase (FAAH) inhibitor URB597 considerably reduced cell viability consequently to an inhibition of PEA hydrolysis and an increase of PEA levels. The increase of cell death observed with this combination of molecules was confirmed in vivo where only co-treatment with both PEA and URB597 led to decreased melanoma progression. The antiproliferative action of the treatment was associated with an elevation of PEA levels and larger necrotic regions in the tumor.. This study suggests the interest of targeting the endocannabinoid system in the management of skin cancer and underlines the advantage of associating endocannabinoids with enzymatic hydrolysis inhibitors. This may contribute to the improvement of long-term palliation or cure of melanoma.

    Topics: Amides; Animals; Arachidonic Acids; Benzamides; Cannabinoid Receptor Modulators; Carbamates; Cell Death; Cell Line, Tumor; Cell Survival; Disease Models, Animal; Drug Synergism; Endocannabinoids; Ethanolamines; Male; Mass Spectrometry; Melanoma, Experimental; Mice; Mice, Inbred C57BL; Palmitic Acids; Polyunsaturated Alkamides; Random Allocation; Reverse Transcriptase Polymerase Chain Reaction; Skin Neoplasms

2012
Cannabinoid type-1 receptor reduces pain and neurotoxicity produced by chemotherapy.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2012, May-16, Volume: 32, Issue:20

    Painful peripheral neuropathy is a dose-limiting complication of chemotherapy. Cisplatin produces a cumulative toxic effect on peripheral nerves, and 30-40% of cancer patients receiving this agent experience pain. By modeling cisplatin-induced hyperalgesia in mice with daily injections of cisplatin (1 mg/kg, i.p.) for 7 d, we investigated the anti-hyperalgesic effects of anandamide (AEA) and cyclohexylcarbamic acid 3'-carbamoyl-biphenyl-3-yl ester (URB597), an inhibitor of AEA hydrolysis. Cisplatin-induced mechanical and heat hyperalgesia were accompanied by a decrease in the level of AEA in plantar paw skin. No changes in motor activity were observed after seven injections of cisplatin. Intraplantar injection of AEA (10 μg/10 μl) or URB597 (9 μg/10 μl) transiently attenuated hyperalgesia through activation of peripheral CB₁ receptors. Co-injections of URB597 (0.3 mg/kg daily, i.p.) with cisplatin decreased and delayed the development of mechanical and heat hyperalgesia. The effect of URB597 was mediated by CB₁ receptors since AM281 (0.33 mg/kg daily, i.p.) blocked the effect of URB597. Co-injection of URB597 also normalized the cisplatin-induced decrease in conduction velocity of Aα/Aβ-fibers and reduced the increase of ATF-3 and TRPV1 immunoreactivity in dorsal root ganglion (DRG) neurons. Since DRGs are a primary site of toxicity by cisplatin, effects of cisplatin were studied on cultured DRG neurons. Incubation of DRG neurons with cisplatin (4 μg/ml) for 24 h decreased the total length of neurites. URB597 (100 nM) attenuated these changes through activation of CB₁ receptors. Collectively, these results suggest that pharmacological facilitation of AEA signaling is a promising strategy for attenuating cisplatin-associated sensory neuropathy.

    Topics: Activating Transcription Factor 3; Animals; Antineoplastic Agents; Arachidonic Acids; Benzamides; Cannabinoid Receptor Modulators; Carbamates; Cells, Cultured; Cisplatin; Disease Models, Animal; Drug Interactions; Endocannabinoids; Enzyme Inhibitors; Ganglia, Spinal; Hyperalgesia; Male; Mice; Mice, Inbred C3H; Morpholines; Motor Activity; Neurites; Neurotoxicity Syndromes; Peripheral Nervous System Diseases; Polyunsaturated Alkamides; Pyrazoles; Receptor, Cannabinoid, CB1; TRPV Cation Channels

2012
Lack of effect of chronic pre-treatment with the FAAH inhibitor URB597 on inflammatory pain behaviour: evidence for plastic changes in the endocannabinoid system.
    British journal of pharmacology, 2012, Volume: 167, Issue:3

    Elevating levels of endocannabinoids with inhibitors of fatty acid amide hydrolase (FAAH) is a major focus of pain research, purported to be a safer approach devoid of cannabinoid receptor-mediated side effects. Here, we have determined the effects of sustained pharmacological inhibition of FAAH on inflammatory pain behaviour and if pharmacological inhibition of FAAH was as effective as genetic deletion of FAAH on pain behaviour.. Effects of pre-treatment with a single dose, versus 4 day repeated dosing with the selective FAAH inhibitor, URB597 (i.p. 0.3 mg·kg⁻¹), on carrageenan-induced inflammatory pain behaviour and spinal pro-inflammatory gene induction were determined in rats. Effects of pain induction and of the drug treatments on levels of arachidonoyl ethanolamide (AEA), palmitoyl ethanolamide (PEA) and oleolyl ethanolamide (OEA) in the spinal cord were determined.. Single, but not repeated, URB597 treatment significantly attenuated the development of inflammatory hyperalgesia (P < 0.001, vs. vehicle-treated animals). Neither mode of URB597 treatment altered levels of AEA, PEA and OEA in the hind paw, or carrageenan-induced paw oedema. Single URB597 treatment produced larger increases in AEA, PEA and OEA in the spinal cord, compared with those after repeated administration. Single and repeated URB597 treatment decreased levels of immunoreactive N-acylphosphatidylethanolamine phospholipase D (NAPE-PLD) in the spinal cord and attenuated carrageenan-induced spinal pro-inflammatory gene induction.. Changes in the endocannabinoid system may contribute to the loss of analgesic effects following repeated administration of low dose URB597 in this model of inflammatory pain.

    Topics: Amides; Amidohydrolases; Animals; Arachidonic Acids; Behavior, Animal; Benzamides; Carbamates; Disease Models, Animal; Drug Administration Schedule; Endocannabinoids; Ethanolamines; Inflammation; Male; Oleic Acids; Pain; Palmitic Acids; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Spinal Cord

2012
Dysfunction in fatty acid amide hydrolase is associated with depressive-like behavior in Wistar Kyoto rats.
    PloS one, 2012, Volume: 7, Issue:5

    While the etiology of depression is not clearly understood at the present time, this mental disorder is thought be a complex and multifactorial trait with important genetic and environmental contributing factors.. The role of the endocannabinoid (eCB) system in depressive behavior was examined in Wistar Kyoto (WKY) rat strain, a genetic model of depression. Our findings revealed selective abnormalities in the eCB system in the brains of WKY rats compared to Wistar (WIS) rats. Immunoblot analysis indicated significantly higher levels of fatty acid amide hydrolase (FAAH) in frontal cortex and hippocampus of WKY rats with no alteration in the level of N-arachidonyl phosphatidyl ethanolamine specific phospholipase-D (NAPE-PLD). Significantly higher levels of CB1 receptor-mediated G-protein coupling and lower levels of anandamide (AEA) were found in frontal cortex and hippocampus of WKY rats. While the levels of brain derived neurotropic factor (BDNF) were significantly lower in frontal cortex and hippocampus of WKY rats compared to WIS rats, pharmacological inhibition of FAAH elevated BDNF levels in WKY rats. Inhibition of FAAH enzyme also significantly increased sucrose consumption and decreased immobility in the forced swim test in WKY rats.. These findings suggest a critical role for the eCB system and BDNF in the genetic predisposition to depressive-like behavior in WKY rats and point to the potential therapeutic utility of eCB enhancing agents in depressive disorder.

    Topics: Amidohydrolases; Animals; Arachidonic Acids; Benzamides; Brain; Brain-Derived Neurotrophic Factor; Cannabinoid Receptor Modulators; Carbamates; Depressive Disorder; Disease Models, Animal; Endocannabinoids; Enzyme Inhibitors; Frontal Lobe; Genetic Predisposition to Disease; Hippocampus; Male; Phospholipase D; Polyunsaturated Alkamides; Rats; Rats, Inbred WKY; Rats, Wistar; Receptor, Cannabinoid, CB1; Species Specificity; Swimming

2012
N-arachidonoyl-serotonin in the basolateral amygdala increases anxiolytic behavior in the elevated plus maze.
    Behavioural brain research, 2012, Aug-01, Volume: 233, Issue:2

    CB(1) receptors in the amygdala have been shown to mediate learned and unlearned anxiety states, however, the role of amygdalar TRPV1 receptors remains unclear. In the present study we investigated the potential anxiolytic action of intra-basolateral amygdala (BLA) infusion of N-arachidonoyl-serotonin (AA-5-HT), a dual blocker of the endocannabinoid-inactivating enzyme, fatty acid amide hydrolase (FAAH), and a TRPV1 antagonist. Varying doses of AA-5-HT (0-0.5 nmol) were administered into the BLA prior to elevated plus maze testing. AA-5-HT significantly increased both time spent and number of entries into the open arms. Next, to determine whether the anxiolytic effects were the result of blocking FAAH, TRPV1, or whether a combined action was required, rats were given intra-BLA infusions of either 0.25 nmol AA-5-HT, 1.0 nmol capsazepine (CZP, a TRPV1 antagonist), 0.01 μg URB597 (a selective FAAH inhibitor), or vehicle. Again, AA-5-HT increased the time spent in the open arms as well as the number of open arm entries. In contrast, CZP and URB597 did not reliably alter plus maze performance. We then investigated the effects of co-administration of CZP (1.0 or 10.0 nmol) and URB597 (0.01 or 0.1 μg). At lower doses, co-injections significantly increased both open arm entries as well as the time spent in the open arms, compared to vehicle or either compound alone. While co-administration of the higher doses had no significant effect when compared to either vehicle or CZP treatment, we did observe that open arm activity was elevated in rats receiving combined CZP-URB597 treatment compared to URB597 alone. Overall, our findings indicate that simultaneous FAAH activity and TRPV1 activation are important with respect to the expression of unconditioned fear as mediated within the BLA.

    Topics: Amygdala; Analysis of Variance; Animals; Anxiety Disorders; Arachidonic Acids; Benzamides; Capsaicin; Carbamates; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Enzyme Inhibitors; Exploratory Behavior; Male; Maze Learning; Rats; Rats, Sprague-Dawley; Serotonin; TRPV Cation Channels

2012
Inhibition of fatty acid amide hydrolase by URB597 attenuates the anxiolytic-like effect of acetaminophen in the mouse elevated plus-maze test.
    Behavioural pharmacology, 2012, Volume: 23, Issue:4

    Acetaminophen is the most widely used analgesic/antipyretic drug. It is metabolized into N-arachidonoylphenolamine (AM404), which inhibits the reuptake of anandamide. In view of the role of endocannabinoids in the effect of acetaminophen, we tested its anxiolytic-like effect by observing the behavior of mice using the elevated plus-maze test. The results indicated that acetaminophen [100 and 200 mg/kg, intraperitoneally (i.p.)] exerted an anxiolytic-like effect that was represented by higher percentage open-arm time, percentage open-arm entries, and total number of head dips compared with the vehicle control (P<0.05). Inhibition of fatty acid amide hydrolase, an enzyme involved in the cerebral metabolism of acetaminophen into AM404, using URB597 (0.07 mg/kg, i.p.), attenuated the anxiolytic-like effect of acetaminophen. Pretreatment with the cannabinoid type-1 receptor antagonist rimonabant (1 mg/kg, i.p.) antagonized the effect of acetaminophen. Remarkably, the selected doses of rimonabant or URB597 did not themselves induce any anxiolytic-like effect. Furthermore, the selected doses of acetaminophen (25, 50, 100, and 200 mg/kg, i.p.) did not significantly alter the locomotor activity of mice in the open-field test. In conclusion, these findings confirmed that acetaminophen shows an anxiolytic-like effect in mice that involves, at least in part, AM404-mediated accumulation of anandamide in the brain and consequent activation of cannabinoid type-1 receptors.

    Topics: Acetaminophen; Amidohydrolases; Animals; Anti-Anxiety Agents; Anxiety; Arachidonic Acids; Benzamides; Carbamates; Disease Models, Animal; Dose-Response Relationship, Drug; Injections, Intraperitoneal; Male; Maze Learning; Mice; Mice, Inbred BALB C; Motor Activity; Piperidines; Pyrazoles; Rimonabant

2012
Subventricular zone neural progenitors protect striatal neurons from glutamatergic excitotoxicity.
    Brain : a journal of neurology, 2012, Volume: 135, Issue:Pt 11

    The functional significance of adult neural stem and progenitor cells in hippocampal-dependent learning and memory has been well documented. Although adult neural stem and progenitor cells in the subventricular zone are known to migrate to, maintain and reorganize the olfactory bulb, it is less clear whether they are functionally required for other processes. Using a conditional transgenic mouse model, selective ablation of adult neural stem and progenitor cells in the subventricular zone induced a dramatic increase in morbidity and mortality of central nervous system disorders characterized by excitotoxicity-induced cell death accompanied by reactive inflammation, such as 4-aminopyridine-induced epilepsy and ischaemic stroke. To test the role of subventricular zone adult neural stem and progenitor cells in protecting central nervous system tissue from glutamatergic excitotoxicity, neurophysiological recordings of spontaneous excitatory postsynaptic currents from single medium spiny striatal neurons were measured on acute brain slices. Indeed, lipopolysaccharide-stimulated, but not unstimulated, subventricular zone adult neural stem and progenitor cells reverted the increased frequency and duration of spontaneous excitatory postsynaptic currents by secreting the endocannabinod arachidonoyl ethanolamide, a molecule that regulates glutamatergic tone through type 1 cannabinoid receptor (CB(1)) binding. In vivo restoration of cannabinoid levels, either by administration of the type 1 cannabinoid receptor agonist HU210 or the inhibitor of the principal catabolic enzyme fatty acid amide hydrolase, URB597, completely reverted the increased morbidity and mortality of adult neural stem and progenitor cell-ablated mice suffering from epilepsy and ischaemic stroke. Our results provide the first evidence that adult neural stem and progenitor cells located within the subventricular zone exert an 'innate' homeostatic regulatory role by protecting striatal neurons from glutamate-mediated excitotoxicity.

    Topics: 4-Aminopyridine; Amidohydrolases; Animals; Arachidonic Acids; Benzamides; Carbamates; Corpus Striatum; Disease Models, Animal; Dronabinol; Endocannabinoids; Epilepsy; Excitatory Amino Acid Antagonists; Excitatory Postsynaptic Potentials; Ganciclovir; Glutamic Acid; Lateral Ventricles; Lipopolysaccharides; Mice; Mice, Inbred C57BL; Mice, Transgenic; Neural Stem Cells; Neuroprotective Agents; Polyunsaturated Alkamides; Stem Cells; Stroke

2012
New FAAH inhibitors based on 3-carboxamido-5-aryl-isoxazole scaffold that protect against experimental colitis.
    Bioorganic & medicinal chemistry, 2011, Jun-15, Volume: 19, Issue:12

    Growing evidence suggests a role for the endocannabinoid (EC) system, in intestinal inflammation and compounds inhibiting anandamide degradation offer a promising therapeutic option for the treatment of inflammatory bowel diseases. In this paper, we report the first series of carboxamides derivatives possessing FAAH inhibitory activities. Among them, compound 39 displayed significant inhibitory FAAH activity (IC(50)=0.088 μM) and reduced colitis induced by intrarectal administration of TNBS.

    Topics: Amidohydrolases; Animals; Colitis; Disease Models, Animal; Enzyme Activation; Enzyme Inhibitors; Humans; Inhibitory Concentration 50; Isoxazoles; Mice; Mice, Inbred C57BL; Models, Molecular; Molecular Structure

2011
Fatty acid amide hydrolase (FAAH) inhibition reduces L-3,4-dihydroxyphenylalanine-induced hyperactivity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned non-human primate model of Parkinson's disease.
    The Journal of pharmacology and experimental therapeutics, 2011, Volume: 336, Issue:2

    Dopaminergic therapies remain the most efficacious symptomatic treatments for Parkinson's disease (PD) but are associated with motor complications, including dyskinesia, and nonmotor complications, such as psychosis, impulse control disorders (ICD), and dopamine dysregulation syndrome (DDS). Nondopaminergic neurotransmitter systems, including the endocannabinoid system, are probably critical to the development of these complications. The role of fatty acid amide hydrolase (FAAH) in mediating l-3,4-dihydroxyphenylalanine (L-DOPA)-induced behaviors was explored in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned marmoset model of PD. Pharmacodynamic and locomotor effects of the selective FAAH inhibitor [3-(3-carbamoylphenyl)phenyl] N-cyclohexylcarbamate (URB597) were assessed via bioanalytical (liquid chromatography-tandem mass spectrometry) and behavioral observation approaches. URB597 (3, 10, 30, or 60 mg/kg p.o.) increased plasma levels of the FAAH substrates N-arachidonoyl ethanolamide (anandamide), N-oleoyl ethanolamide, and N-palmitoyl ethanolamide by 10.3 ± 0.3-, 7.8 ± 0.2-, and 1.8 ± 0.1-fold (mean of URB597 groups ± S.E.M.), respectively, compared with vehicle (all p < 0.001) 4 h after administration. Treatment with L-DOPA (20 mg/kg s.c.) alleviated parkinsonism but elicited dyskinesia, psychosis-like-behaviors and hyperactivity, a potential correlate of ICD and DDS. During the 2 to 4 h after L-DOPA, corresponding to 4 to 6 h after URB597 administration, URB597 reduced total L-DOPA-induced activity and the magnitude of hyperactivity by 32 and 52%, respectively, to levels equivalent to those seen in normal animals. Treatment with URB597 (10 mg/kg p.o.) did not modify the antiparkinsonian actions of L-DOPA or L-DOPA-induced dyskinesia and psychosis. URB597 did not alter plasma L-DOPA levels and was without behavioral effects when administered alone. Inhibition of FAAH may represent a novel approach to reducing L-DOPA-induced side effects, such as ICD and DDS, while maintaining the antiparkinsonian benefits of L-DOPA treatment.

    Topics: Amides; Amidohydrolases; Animals; Benzamides; Callithrix; Carbamates; Disease Models, Animal; Dyskinesia, Drug-Induced; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Female; Levodopa; Motor Activity; MPTP Poisoning; Oleic Acids; Palmitic Acids; Psychoses, Substance-Induced

2011
Local application of the endocannabinoid hydrolysis inhibitor URB597 reduces nociception in spontaneous and chemically induced models of osteoarthritis.
    Pain, 2011, Volume: 152, Issue:5

    The present study examined whether enhancement of endogenous cannabinoid levels by administration of the fatty acid amide hydrolase inhibitor URB597 could modulate joint nociception in 2 rodent models of osteoarthritis (OA). OA-like changes were induced in male Wistar rats by intra-articular injection of monoiodoacetate, while Dunkin-Hartley guinea pigs (age 9-12 months) develop OA naturally and were used as a model of spontaneous OA. Joint nociception was measured by recording electrophysiologically from knee joint primary afferents in response to noxious hyper-rotation of the joint before and after close intra-arterial injection of URB597 (0.03 mg; 0.1 mL bolus); the CB(1) receptor antagonist AM251 (1 mg/kg intraperitoneally) or the CB(2) receptor antagonist AM630 (1 mg/kg intraperitoneally). The effect of systemic URB597 administration (5 mg/kg) on joint pain perception in the monoiodoacetate model was determined by hindlimb incapacitance. Peripheral injection of URB597 caused afferent firing rate to be significantly reduced by up to 56% in the rat OA model and by up to 69% in the guinea pig OA model. Systemic co-administration of AM251, but not AM630, abolished the antinociceptive effect of URB597 in both models. URB597 had no effect in saline-injected control rat joints or in nonarthritic guinea pigs. Systemic URB597 administration significantly reduced hindlimb incapacitance in monoiodoacetate joints and co-administration of the CB(1) antagonist abolished this effect. Local injection of URB597 into OA knee joints reduces mechanonociception and pain, and this response is mediated by CB(1) receptors. Targeting endocannabinoid-metabolizing enzymes in the peripheral nervous system could offer novel therapeutic approaches for the treatment of OA pain.

    Topics: Action Potentials; Afferent Pathways; Age Factors; Animals; Arthralgia; Benzamides; Carbamates; Diclofenac; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Inhibitors; Guinea Pigs; Indoles; Iodoacetic Acid; Male; Nociceptors; Osteoarthritis; Piperidines; Pyrazoles; Rats; Rats, Wistar; Time Factors; Weight-Bearing

2011
Involvement of endocannabinoids in antidepressant and anti-compulsive effect of fluoxetine in mice.
    Behavioural brain research, 2011, Sep-30, Volume: 223, Issue:1

    Endocannabinoid analogues exhibit antidepressant and anti-compulsive like effects similar to that of serotonin selective reuptake inhibitors (SSRIs) indicating a parallelism between the effects of serotonin and endocannabinoids. Therefore, the present study was designed to investigate the role of endocannabinoids in the antidepressant and anti-compulsive like effect of fluoxetine using mice model of forced swim test (FST) and marble-burying behavior (MBB). The results revealed that intracerebroventricular injections of endocannabinoid analogues, anandamide, a CB(1) agonist (AEA: 1-20 μg/mouse); AM404, an anandamide transport inhibitor (0.1-10 μg/mouse); and URB597, a fatty acid amide hydrolase inhibitor (0.05-10 μg/mouse) produced antidepressant-like effect dose-dependently, whereas influenced the MBB in a biphasic manner (produced a U-shaped dose-response curve). Fluoxetine (2.5-20 mg/kg, i.p.) dose dependently decreased the immobility time as well as burying behavior. Co-administration of sub-effective dose of fluoxetine (2.5 mg/kg, i.p.) potentiated the effect of sub-effective dose of AEA (0.5 μg/mouse, i.c.v.), AM404 (0.05 μg/mouse, i.c.v) or URB597 (0.01 μg/mouse, i.c.v) in both the paradigms. Interestingly, pretreatment with AM251, a CB(1) antagonist, blocked the effect of fluoxetine in FST and MBB at a dose (1 μg/mouse, i.c.v) that per se had no effect on either parameter. Similar effects were obtained with endocannabinoid analogues in AM251 pretreated mice. However, AM251 increased the burying behavior in MBB at a highest dose tested (5 μg/mouse). None of the treatments had any influence on locomotor activity. Thus, the study indicates an interaction between endocannabinoid and serotonergic system in regulation of depressive and compulsive-like behavior.

    Topics: Animals; Antidepressive Agents; Arachidonic Acids; Benzamides; Cannabinoid Receptor Modulators; Carbamates; Compulsive Behavior; Depression; Disease Models, Animal; Dose-Response Relationship, Drug; Drug Interactions; Drug Therapy, Combination; Endocannabinoids; Fluoxetine; Injections, Intraventricular; Male; Mice; Motor Activity; Piperidines; Polyunsaturated Alkamides; Pyrazoles

2011
Targeting the endocannabinoid system in the amygdala kindling model of temporal lobe epilepsy in mice.
    Epilepsia, 2011, Volume: 52, Issue:7

    The endocannabinoid system can be considered as a putative target to affect ictogenesis as well as the generation of a hyperexcitable epileptic network. Therefore, we evaluated the effect of a CB1 receptor agonist (WIN55.212-2) and of an inhibitor of the enzymatic degradation of the endocannabinoid anandamide (fatty acid hydrolase inhibitor URB597) in the amygdala kindling model of temporal lobe epilepsy. Only minor effects on seizure thresholds and seizure parameters without a clear dose-dependency were observed in fully kindled mice. When evaluating the impact on kindling acquisition, WIN55.212-2 significantly delayed the progression of seizure severity. In contrast, URB597 did not affect the development of seizures in the kindling paradigm. Analysis of cell proliferation and neurogenesis during the kindling process revealed that URB597 significantly reduced the number of newborn neurons. These data give first evidence that CB1-receptor activation might render a disease-modifying approach. Future studies are necessary that further analyze the role of CB1 receptors and to confirm the efficacy of CB1-receptor agonists in other models of chronic epilepsy.

    Topics: Amidohydrolases; Amygdala; Animals; Benzamides; Benzoxazines; Carbamates; Disease Models, Animal; Epilepsy, Temporal Lobe; Kindling, Neurologic; Male; Mice; Models, Neurological; Morpholines; Naphthalenes; Receptor, Cannabinoid, CB1; Seizures

2011
Ethanolamine is a novel STAT-3 dependent cardioprotective agent.
    Basic research in cardiology, 2010, Volume: 105, Issue:6

    Ethanolamine is a biogenic amine found naturally in the body as part of membrane lipids and as a metabolite of the cardioprotective substances, sphingosine-1-phosphate (S1P) and anandamide. In the brain, ethanolamine, formed from the breakdown of anandamide protects against ischaemic apoptosis. However, the effects of ethanolamine in the heart are unknown. Signal transducer and activator of transcription 3 (STAT-3) is a critical prosurvival factor in ischaemia/reperfusion (I/R) injury. Therefore, we investigated whether ethanolamine protects the heart via activation of STAT-3. Isolated hearts from wildtype or cardiomyocyte specific STAT-3 knockout (K/O) mice were pre-treated with ethanolamine (Etn) (0.3 mmol/L) before I/R insult. In vivo rat hearts were subjected to 30 min ischaemia/2 h reperfusion in the presence or absence of 5 mg/kg S1P and/or the FAAH inhibitor, URB597. Infarct size was measured at the end of each protocol by triphenyltetrazolium chloride staining. Pre-treatment with ethanolamine decreased infarct size in isolated mouse or rat hearts subjected to I/R but this infarct sparing effect was lost in cardiomyocyte specific STAT-3 deficient mice. Pre-treatment with ethanolamine increased nuclear phosphorylated STAT-3 [control 0.75 ± 0.08 vs. Etn 1.50 ± 0.09 arbitrary units; P < 0.05]. Our findings suggest a novel cardioprotective role for ethanolamine against I/R injury via activation of STAT-3.

    Topics: Amidohydrolases; Animals; Benzamides; Carbamates; Cardiovascular Agents; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Inhibitors; Ethanolamine; Janus Kinases; Lysophospholipids; Male; Mice; Mice, Knockout; Myocardial Infarction; Myocardial Reperfusion Injury; Myocardium; Phosphorylation; Rats; Rats, Wistar; Sphingosine; STAT3 Transcription Factor; Tyrphostins

2010
Biochemical and biological properties of 4-(3-phenyl-[1,2,4] thiadiazol-5-yl)-piperazine-1-carboxylic acid phenylamide, a mechanism-based inhibitor of fatty acid amide hydrolase.
    Anesthesia and analgesia, 2009, Volume: 108, Issue:1

    Fatty acid amide hydrolase (FAAH) is an integral membrane enzyme within the amidase-signature family. It catalyzes the hydrolysis of several endogenous biologically active lipids, including anandamide (arachidonoyl ethanolamide), oleoyl ethanolamide, and palmitoyl ethanolamide. These endogenous FAAH substrates have been shown to be involved in a variety of physiological and pathological processes, including synaptic regulation, regulation of sleep and feeding, locomotor activity, pain and inflammation. Here we describe the biochemical and biological properties of a potent and selective FAAH inhibitor, 4-(3-phenyl-[1,2,4]thiadiazol-5-yl)-piperazine-1-carboxylic acid phenylamide (JNJ-1661010). The time-dependence of apparent IC(50) values at rat and human recombinant FAAH, dialysis and mass spectrometry data indicate that the acyl piperazinyl fragment of JNJ-1661010 forms a covalent bond with the enzyme. This bond is slowly hydrolyzed, with release of the piperazinyl fragment and recovery of enzyme activity. The lack of inhibition observed in a rat liver esterase assay suggests that JNJ-1661010 is not a general esterase inhibitor. JNJ-1661010 is >100-fold preferentially selective for FAAH-1 when compared to FAAH-2. JNJ-1661010 dose-dependently increases arachidonoyl ethanolamide, oleoyl ethanolamide, and palmitoyl ethanolamide in the rat brain. The compound attenuates tactile allodynia in the rat mild thermal injury model of acute tissue damage and in the rat spinal nerve ligation (Chung) model of neuropathic pain. JNJ-1661010 also diminishes thermal hyperalgesia in the inflammatory rat carrageenan paw model. These data suggest that FAAH inhibitors with modes of action similar to JNJ-1661010 may be useful clinically as broad-spectrum analgesics.

    Topics: Amides; Amidohydrolases; Analgesics; Animals; Arachidonic Acids; Brain; Carrageenan; Disease Models, Animal; Dose-Response Relationship, Drug; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Hot Temperature; Humans; Hydrolysis; Isoenzymes; Kinetics; Male; Mice; Mice, Inbred C57BL; Mice, Knockout; Neuralgia; Oleic Acids; Pain; Pain Measurement; Pain Threshold; Palmitic Acids; Piperazines; Polyunsaturated Alkamides; Rats; Rats, Sprague-Dawley; Reaction Time; Recombinant Proteins; Thiadiazoles

2009
Interactions between environmental aversiveness and the anxiolytic effects of enhanced cannabinoid signaling by FAAH inhibition in rats.
    Psychopharmacology, 2009, Volume: 204, Issue:4

    Since the discovery of endogenous cannabinoid signaling, the number of studies exploring its role in health and disease has increased exponentially. Fatty acid amide hydrolase (FAAH), the enzyme responsible for degradation of the endocannabinoid anandamide, has emerged as a promising target for anxiety-related disorders. FAAH inhibitors (e.g., URB597) increase brain levels of anandamide and induce anxiolytic-like effects in rodents. Recent findings, however, questioned the efficacy of URB597 as an anxiolytic.. We tested here the hypothesis that conflicting findings are due to variations in the stressfulness of experimental conditions employed in various studies.. We found that URB597 (0.1-0.3 mg/kg) did not produce anxiolytic effects when the aversiveness of testing procedures was minimized by handling rats daily before experimentation, by habituating them to the experimental room, or by employing low illumination during testing. In contrast, URB597 had robust anxiolytic effects when the aversiveness of the testing environment was increased by eliminating habituation to the experimental room or by employing bright lighting conditions. Unlike URB597, the benzodiazepine chlordiazepoxide (5 mg/kg) had anxiolytic effects under all testing conditions. The anxiolytic effects of URB597 were abolished by the cannabinoid CB1-receptor antagonist AM251, showing that they were mediated by CB1 receptors. Close inspection of experimental conditions employed in earlier reports suggests that conflicting findings with URB597 can be explained by different testing conditions, such as those manipulated in the present study.. Our findings show that FAAH inhibition does not affect anxiety under mildly stressful circumstances but protects against the anxiogenic effects of aversive stimuli.

    Topics: Amidohydrolases; Animals; Anti-Anxiety Agents; Anxiety; Benzamides; Carbamates; Chlordiazepoxide; Disease Models, Animal; Dose-Response Relationship, Drug; Enzyme Inhibitors; Male; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Signal Transduction

2009
Inhibition of fatty acid amide hydrolase and cyclooxygenase-2 increases levels of endocannabinoid related molecules and produces analgesia via peroxisome proliferator-activated receptor-alpha in a model of inflammatory pain.
    Neuropharmacology, 2008, Volume: 55, Issue:1

    The antinociceptive effects of the endocannabinoids (ECs) are enhanced by inhibiting catabolic enzymes such as fatty acid amide hydrolase (FAAH). The physiological relevance of the metabolism of ECs by other pathways, such as cyclooxygenase-2 (COX2) is less clear. To address this question we compared the effects of local inhibition of FAAH versus COX2 (URB597 and nimesulide, respectively) on inflammatory hyperalgesia and levels of endocannabinoids and related molecules in the hindpaw. Inflammatory hyperalgesia was measured following intraplantar injection of carrageenan. Effects of intraplantar injection of URB597 (25 microg and 100 microg) or nimesulide (50 microg) on hyperalgesia and hindpaw levels of anandamide (AEA), 2-arachidonoylglycerol (2AG) and N-palmitoylethanolamine (PEA) were determined. Although both doses of URB597 increased levels of AEA and 2AG in the carrageenan inflamed hindpaw, only the lower dose of URB597 attenuated hyperalgesia (P<0.05). Nimesulide attenuated both hyperalgesia and hindpaw oedema (P<0.001, P<0.01, respectively) and increased levels of PEA (P<0.05) in the hindpaw. Since both AEA and PEA are ligands for peroxisome proliferator-activated receptor-alpha (PPARalpha), the effects of the PPARalpha antagonist GW6471 on nimesulide- and URB597-mediated effects were studied. GW6471, but not a PPARgamma antagonist, blocked the inhibitory effects of nimesulide and URB597 on hyperalgesia. Our data suggest that both COX2 and FAAH play a role in the metabolism of endocannabinoids and related molecules. The finding that PPARalpha antagonism blocked the inhibitory effects of nimesulide and URB597 suggests that PPARalpha contributes to their antinociceptive effects in the carrageenan model of inflammatory hyperalgesia.

    Topics: Amides; Amidohydrolases; Animals; Benzamides; Cannabinoid Receptor Modulators; Carbamates; Carrageenan; Cyclooxygenase 2; Disease Models, Animal; Dose-Response Relationship, Drug; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Guanosine 5'-O-(3-Thiotriphosphate); Hyperalgesia; Male; Pain Measurement; Palmitic Acids; PPAR alpha; Protein Binding; Rats; Rats, Sprague-Dawley; Sulfonamides; Time Factors; Weight-Bearing

2008
Effects of URB597 as an inhibitor of fatty acid amide hydrolase on modulation of nociception in a rat model of cholestasis.
    European journal of pharmacology, 2008, Sep-04, Volume: 591, Issue:1-3

    Cholestasis is associated with increased activity of the endogenous opioid system that results in analgesia. Endocannabinoid system can reduce pain sensitivity. The use of inhibitors of endocannabinoid metabolism is a novel means of pharmacologically increasing endocannabinoid levels. Considering the interaction that has been shown between the endogenous opioid and endocannabinoid systems in nociception processing, we studied the effects of URB597, a selective inhibitor of FAAH (fatty acid amide hydrolase), on modulation of nociception in a model of elevated endogenous opioid tone, cholestasis. Cholestasis was induced by ligation of the main bile duct using two ligatures and then transection of the duct at the midpoint between them. Seven days after surgery, tail-flick latencies were measured at 60 min after drug administration. A significant increase (P<0.001) in nociception threshold was observed in cholestatic rats compared to unoperated and sham groups. Administration of URB597 (0.3 mg/kg, i.p.) in cholestatic animals significantly (P<0.001) increased tail-flick latency compared to the vehicle treated cholestatic group. URB597 injection to unoperated and sham groups caused a significant (P<0.05, P<0.05) increase in tail-flick latency compared to their respective vehicle treated groups. The antinociceptive effect of URB597 was blocked by coadministration of a cannabinoid CB(1) receptor antagonist, AM251 (1 mg/kg, i.p.) but not by a cannabinoid CB(2) receptor antagonist, SR144528 (1 mg/kg, i.p.) with URB597. These data showed that URB597 as a FAAH inhibitor potentiates antinociception induced by cholestasis in tail-flick test and that the inhibitory effects of URB597 in this model are mediated by cannabinoid CB(1) and not CB(2) receptors.

    Topics: Amidohydrolases; Animals; Benzamides; Carbamates; Cholestasis; Disease Models, Animal; Injections, Intraperitoneal; Male; Pain; Pain Measurement; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2

2008
Inhibition of fatty acid amide hydrolase produces PPAR-alpha-mediated analgesia in a rat model of inflammatory pain.
    British journal of pharmacology, 2008, Volume: 155, Issue:8

    We have previously demonstrated antinociceptive effects of fatty acid amide hydrolase (FAAH) inhibition that were accompanied by increases in the levels of endocannabinoids (ECs) in the hind paw. Here, the effects of the FAAH inhibitor URB597 (3'-carbamoyl-biphenyl-3-yl-cyclohexylcarbamate) on responses of spinal neurons were studied.. Extracellular single-unit recordings of dorsal horn neurons were made in anaesthetized rats with hind paw inflammation induced by lambda-carrageenan. Effects of intraplantar pre-administration of URB597, or vehicle, on carrageenan-evoked expansion of peripheral receptive fields of spinal neurons and mechanically evoked responses of neurons were studied. The cannabinoid receptor type 1 (CB(1)) antagonist AM251 (N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide) and the peroxisome proliferator-activated receptor (PPAR)-alpha antagonist GW6471 ([(2S)-2-[[(1Z)-1-methyl-3-oxo-3-[4-(trifluoromethyl)phenyl]-1-propenyl]amino]-3-[4-[2-(5-methyl-2-phenyl-4-oxa zolyl)ethoxy]phenyl]propyl]-carbamic acid ethyl ester) were used to investigate the roles of these receptors in mediating the effects of URB597.. URB597 (25 microg in 50 microL) pretreatment significantly inhibited carrageenan-evoked receptive field expansion and this was significantly reversed by co-administration of the PPAR-alpha antagonist but not the CB(1) antagonist. Pretreatment with the PPAR-alpha receptor agonist WY14643 ([[4-chloro-6-[(2,3-dimethylphenyl)amino]-2-pyrimidinyl]thio]acetic acid) also significantly inhibited receptive field expansion. URB597 (25 or 100 microg in 50 microL) had no significant effect on mechanically evoked responses of spinal neurons.. URB597 inhibited receptive field expansions but not mechanically evoked responses of spinal neurons in rats with hind paw inflammation. These effects were blocked by PPAR-alpha receptor antagonism. These data support the contention that URB597 exerts its antinociceptive effects by indirect inhibition of sensitization of neuronal responses at least partly through PPAR-alpha activation due to enhanced EC levels.

    Topics: Amidohydrolases; Analgesia; Animals; Benzamides; Carbamates; Carrageenan; Disease Models, Animal; Inflammation; Oxazoles; Pain; Piperidines; PPAR gamma; Pyrazoles; Rats; Receptor, Cannabinoid, CB1; Tyrosine

2008
Reduced anxiety-like behaviour induced by genetic and pharmacological inhibition of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH) is mediated by CB1 receptors.
    Neuropharmacology, 2008, Volume: 54, Issue:1

    Anandamide and 2-arachidonoyl glycerol, referred to as endocannabinoids (eCBs), are the endogenous agonists for the cannabinoid receptor type 1 (CB1). Several pieces of evidence support a role for eCBs in the attenuation of anxiety-related behaviours, although the precise mechanism has remained uncertain. The fatty acid amid hydrolase (FAAH), an enzyme responsible for the degradation of eCBs, has emerged as a promising target for anxiety-related disorders, since FAAH inhibitors are able to increase the levels of anandamide and thereby induce anxiolytic-like effects in rodents. The present study adopted both genetic and pharmacological approaches and tested the hypothesis that FAAH-deficient (FAAH(-/-)) mice as well as C57BL/6N mice treated with an FAAH inhibitor (URB597) would express reduced anxiety-like responses. Furthermore, as it is known that anandamide can bind several other targets than CB1 receptors, we investigated whether FAAH inhibition reduces anxiety via CB1 receptors. FAAH(-/-) mice showed reduced anxiety both in the elevated plus maze and in the light-dark test. These genotype-related differences were prevented by the CB1 receptor antagonist rimonabant (3mg/kg). Moreover, URB597 (1mg/kg) induced an anxiolytic-like effect in C57BL/6N mice exposed to the elevated plus maze, which was prevented by rimonabant (3mg/kg). The present work provides genetic and pharmacological evidence supporting the inhibition of FAAH as an important mechanism for the alleviation of anxiety. In addition, it indicates an increased activation of CB1 receptors as a mechanism underlying the effects of FAAH inhibition in two models of anxiety.

    Topics: Amidohydrolases; Analysis of Variance; Animals; Anxiety; Arachidonic Acids; Behavior, Animal; Benzamides; Carbamates; Disease Models, Animal; Endocannabinoids; Glycerides; Male; Maze Learning; Mice; Mice, Inbred C57BL; Mice, Knockout; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptor, Cannabinoid, CB1; Rimonabant

2008
The effect of cannabidiol and URB597 on conditioned gaping (a model of nausea) elicited by a lithium-paired context in the rat.
    Psychopharmacology, 2008, Volume: 196, Issue:3

    Anticipatory nausea (AN) experienced by chemotherapy patients is resistant to current anti-nausea treatments. In this study, the effect of manipulation of the endocannabinoid (EC) system on a rat model of nausea (conditioned gaping) was determined.. The potential of cannabidiol (CBD) and the fatty acid amide hydrolase (FAAH) inhibitor, URB597 (URB) to reduce conditioned gaping in rats were evaluated.. In each experiment, rats received four conditioning trials in which they were injected with lithium chloride immediately before placement in a distinctive odor-laced context. During testing, in experiment 1, rats were injected with vehicle (VEH), 1, 5 or 10 mg/kg CBD 30 min before placement in the context previously paired with nausea and in experiment 2, rats were injected with VEH, 0.1 or 0.3 mg/kg URB 2 h before placement in the context. Additional groups evaluated the ability of the CB(1) antagonist/inverse agonist, SR141716A, to reverse the suppressive effects of URB. Experiment 3 measured the potential of URB to interfere with the establishment of conditioned gaping.. When administered before testing, CBD (1 and 5, but not 10 mg/kg) and URB (0.3, but not 0.1 mg/kg) suppressed conditioned gaping. The effect of URB was reversed by pre-treatment with the CB(1) antagonist/inverse agonist, SR141716A. When administered before conditioning, URB also interfered with the establishment of conditioned gaping.. Manipulations of the EC system may have therapeutic potential in the treatment of AN.

    Topics: Amidohydrolases; Animals; Antiemetics; Antineoplastic Agents; Benzamides; Cannabidiol; Carbamates; Conditioning, Classical; Disease Models, Animal; Dose-Response Relationship, Drug; Lithium Chloride; Male; Nausea; Rats; Rats, Long-Evans; Rats, Sprague-Dawley; Vomiting, Anticipatory

2008
Targeting endocannabinoid degradation protects against experimental colitis in mice: involvement of CB1 and CB2 receptors.
    Journal of molecular medicine (Berlin, Germany), 2008, Volume: 86, Issue:8

    The endocannabinoid (EC) system mediates protection against intestinal inflammation. In this study, we investigated the effects of blocking EC degradation or cellular reuptake in experimental colitis in mice. Mice were treated with trinitrobenzene-sulfonic acid in presence and absence of the fatty acid amide hydrolase (FAAH) blocker URB597, the EC membrane transport inhibitor VDM11, and combinations of both. Inflammation was significantly reduced in the presence of URB597, VDM11, or both as evaluated by macroscopic damage score, myeloperoxidase levels, and colon length. These effects were abolished in CB(1)- and CB(2)-receptor-gene-deficient mice. Quantitative reverse transcription polymerase chain reaction after induction of experimental colitis by different pathways showed that expression of FAAH messenger RNA (mRNA) is significantly reduced in different models of inflammation early in the expression of colitis, and these return to control levels as the disease progresses. Genomic DNA from 202 patients with Crohn's disease (CD) and 206 healthy controls was analyzed for the C385A polymorphism in the FAAH gene to address a possible role in humans. In our groups, the C385A polymorphism was equally distributed in patients with CD and healthy controls. In conclusion, drugs targeting EC degradation offer therapeutic potential in the treatment of inflammatory bowel diseases. Furthermore, reduction of FAAH mRNA expression is involved in the pathophysiological response to colitis.

    Topics: Amidohydrolases; Animals; Arachidonic Acids; Benzamides; Cannabinoid Receptor Modulators; Carbamates; Colitis; Crohn Disease; Disease Models, Animal; Endocannabinoids; Humans; Mice; Mice, Inbred C57BL; Polymorphism, Genetic; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; RNA, Messenger; Trinitrobenzenesulfonic Acid

2008
Evaluation of fatty acid amide hydrolase inhibition in murine models of emotionality.
    Psychopharmacology, 2007, Volume: 192, Issue:1

    Manipulations of the endocannabinoid/fatty acid amide hydrolase (FAAH) signaling systems result in conflicting and paradoxical effects in rodent models of emotional reactivity.. In the present study, we tested the hypothesis that the inhibition of FAAH would elicit significant effects in murine models used to screen anxiolytic and antidepressant drugs.. FAAH (-/-) mice and wild-type mice treated with FAAH inhibitors (URB597 and OL-135) were evaluated in standard behavioral screening models for antidepressant (i.e., tail suspension and forced-swim tests) and anxiolytic (i.e., elevated plus maze) agents. The doses of URB597 and OL-135 selected were based on their ability to augment the pharmacological effects (i.e., analgesia, catalepsy, and hypothermia) of exogenously administered anandamide.. FAAH (-/-) mice, anandamide-injected FAAH (-/-) mice, or wild-type mice injected with FAAH inhibitors or anandamide failed to exhibit significant effects in standard tests of emotional reactivity, although the antidepressant desipramine and the anxiolytic agent midazolam were active in the appropriate assays. FAAH- (-/-) and URB597-treated mice finally displayed significant effects in the tail suspension test when substantial methodological changes were made (i.e., altered ambient light and increased sample sizes).. Although FAAH suppression can elicit significant effects under some instances in which consequential procedural modifications are made, the present results indicate that the pharmacological inhibition or genetic deletion of FAAH is ineffective in standard mouse models of emotional reactivity. It remains to be established whether the effects of FAAH inhibition in these modified tasks are predictive of their efficacy in treating emotional disorders.

    Topics: Amidohydrolases; Animals; Anxiety; Arachidonic Acids; Behavior, Animal; Benzamides; Cannabinoid Receptor Modulators; Carbamates; Depression; Disease Models, Animal; Dose-Response Relationship, Drug; Emotions; Endocannabinoids; Enzyme Inhibitors; Lighting; Maze Learning; Mice; Mice, Knockout; Polyunsaturated Alkamides; Pyridines; Signal Transduction

2007
Endocannabinoid-mediated rescue of striatal LTD and motor deficits in Parkinson's disease models.
    Nature, 2007, Feb-08, Volume: 445, Issue:7128

    The striatum is a major forebrain nucleus that integrates cortical and thalamic afferents and forms the input nucleus of the basal ganglia. Striatal projection neurons target the substantia nigra pars reticulata (direct pathway) or the lateral globus pallidus (indirect pathway). Imbalances between neural activity in these two pathways have been proposed to underlie the profound motor deficits observed in Parkinson's disease and Huntington's disease. However, little is known about differences in cellular and synaptic properties in these circuits. Indeed, current hypotheses suggest that these cells express similar forms of synaptic plasticity. Here we show that excitatory synapses onto indirect-pathway medium spiny neurons (MSNs) exhibit higher release probability and larger N-methyl-d-aspartate receptor currents than direct-pathway synapses. Moreover, indirect-pathway MSNs selectively express endocannabinoid-mediated long-term depression (eCB-LTD), which requires dopamine D2 receptor activation. In models of Parkinson's disease, indirect-pathway eCB-LTD is absent but is rescued by a D2 receptor agonist or inhibitors of endocannabinoid degradation. Administration of these drugs together in vivo reduces parkinsonian motor deficits, suggesting that endocannabinoid-mediated depression of indirect-pathway synapses has a critical role in the control of movement. These findings have implications for understanding the normal functions of the basal ganglia, and also suggest approaches for the development of therapeutic drugs for the treatment of striatal-based brain disorders.

    Topics: Animals; Benzamides; Benzoxazines; Cannabinoid Receptor Modulators; Carbamates; Disease Models, Animal; Dopamine; Dopamine D2 Receptor Antagonists; Endocannabinoids; Excitatory Postsynaptic Potentials; In Vitro Techniques; Long-Term Synaptic Depression; Mice; Mice, Transgenic; Morpholines; Naphthalenes; Neostriatum; Neuronal Plasticity; Oxidopamine; Parkinson Disease; Piperidines; Psychomotor Performance; Pyrazoles; Receptor, Cannabinoid, CB1; Receptors, Dopamine D2; Receptors, N-Methyl-D-Aspartate; Reserpine; Synapses

2007
Antidepressant-like activity of the fatty acid amide hydrolase inhibitor URB597 in a rat model of chronic mild stress.
    Biological psychiatry, 2007, Nov-15, Volume: 62, Issue:10

    The endocannabinoid anandamide may be involved in the regulation of emotional reactivity. In particular, it has been shown that pharmacological inhibition of the enzyme fatty acid amide hydrolase (FAAH), which catalyzes the intracellular hydrolysis of anandamide, elicits anxiolytic-like and antidepressant-like effects in rodents.. We investigated the impact of chronic treatment with the selective FAAH inhibitor, URB597 (also termed KDS-4103), on the outcomes of the chronic mild stress (CMS) in rats, a behavioral model with high isomorphism to human depression.. Daily administration of URB597 (.3 mg kg(-1), intraperitoneal [IP]) for 5 weeks corrected the reduction in body weight gain and sucrose intake induced by CMS. The antidepressant imipramine (20 mg kg(-1), once daily, IP) produced a similar response, whereas lower doses of URB597 were either marginally effective (.1 mg kg(-1)) or ineffective (.03 mg kg(-1)). Treatment with URB597 (.3 mg kg(-1)) resulted in a profound inhibition of brain FAAH activity in both CMS-exposed and control rats. Furthermore, the drug regimen increased anandamide levels in midbrain, striatum, and thalamus.. URB597 exerts antidepressant-like effects in a highly specific and predictive animal model of depression. These effects may depend on the ability of URB597 to enhance anandamide signaling in select regions of the brain.

    Topics: Amidohydrolases; Animals; Antidepressive Agents; Behavior, Animal; Benzamides; Body Weight; Brain; Cannabinoid Receptor Modulators; Carbamates; Chronic Disease; Disease Models, Animal; Dose-Response Relationship, Drug; Gene Expression Regulation; Imipramine; Lipid Metabolism; Male; Multivariate Analysis; Rats; Rats, Wistar; Receptor, Cannabinoid, CB1; Stress, Psychological; Sucrose; Time Factors

2007
Local enhancement of cannabinoid CB1 receptor signalling in the dorsal hippocampus elicits an antidepressant-like effect.
    Behavioural pharmacology, 2007, Volume: 18, Issue:5-6

    Systemic administration of direct cannabinoid CB1 receptor agonists and inhibitors of the hydrolytic enzyme fatty acid amide hydrolase have been shown to elicit antidepressant effects. Moreover, the endocannabinoid system in the hippocampus is sensitive to both chronic stress and antidepressant administration, suggesting a potential role of this system in emotional changes associated with these regimens. The aim of this study was to determine if cannabinoid CB1 receptors in the hippocampus modulate emotionality in rats as assessed via the forced swim test. Male Sprague-Dawley rats were bilaterally implanted with cannulae directed at the dentate gyrus of the dorsal hippocampus and subsequently received three infusions of either the cannabinoid CB1 receptor agonist HU-210 (1 and 2.5 microg), the fatty acid amide hydrolase inhibitor URB597 (0.5 and 1 microg), the cannabinoid CB1 receptor antagonist AM251 (1 and 2.5 microg), or vehicle (dimethyl sulfoxide) and were assessed in the forced swim test. Infusion of both doses of HU-210 resulted in a dramatic reduction in immobility and increase in swimming behaviour, indicative of an antidepressant response, which was partially reversed by coadministration of AM251. No effect of URB597 administration or any effect following the administration of AM251 alone was, however, observed. These data indicate that activation of CB1 receptors in the dentate gyrus of the hippocampus results in an antidepressant-like response. Collectively, these data highlight the potential importance of changes in the hippocampal endocannabinoid system following stress or antidepressant treatment with respect to the manifestation and/or treatment of depression.

    Topics: Analysis of Variance; Animals; Antidepressive Agents; Behavior, Animal; Benzamides; Cannabinoid Receptor Modulators; Carbamates; Dentate Gyrus; Depression; Disease Models, Animal; Dronabinol; Hippocampus; Male; Piperidines; Pyrazoles; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Stress, Psychological; Swimming

2007
Changes in brain levels of N-acylethanolamines and 2-arachidonoylglycerol in focal cerebral ischemia in mice.
    Journal of neurochemistry, 2007, Volume: 103, Issue:5

    The N-acylethanolamines (NAEs) and 2-arachidonoylglycerol (2-AG) are bioactive lipids that can modulate inflammatory responses and protect neurons against glutamatergic excitotoxicity. We have used a model of focal cerebral ischemia in young adult mice to investigate the relationship between focal cerebral ischemia and endogenous NAEs. Over the first 24 h after induction of permanent middle cerebral artery occlusion, we observed a time-dependent increase in all the investigated NAEs, except for anandamide. Moreover, we found an accumulation of 2-AG at 4 h that returned to basal level 12 h after induction of ischemia. Accumulation of NAEs did not depend on regulation of N-acylphosphatidylethanolamine-hydrolyzing phospholipase D or fatty acid amide hydrolase. Treatment with the fatty acid amide hydrolase inhibitor URB597 (cyclohexyl carbamic acid 3'-carbamoyl-biphenyl-3-yl ester; 1 mg/kg; i.p.) 1.5 h before arterial occlusion decreased the infarct volume in our model system. Our results suggest that NAEs and 2-AG may be involved in regulation of neuroprotection during focal cerebral ischemia in mice.

    Topics: Analysis of Variance; Animals; Arachidonic Acids; Benzamides; Brain; Brain Infarction; Brain Ischemia; Carbamates; Disease Models, Animal; Endocannabinoids; Enzyme Inhibitors; Ethanolamines; Glycerides; Male; Mice; RNA, Messenger; Time Factors

2007
Actions of the FAAH inhibitor URB597 in neuropathic and inflammatory chronic pain models.
    British journal of pharmacology, 2006, Volume: 147, Issue:3

    While cannabinoid receptor agonists have analgesic activity in chronic pain states, they produce a spectrum of central CB(1) receptor-mediated motor and psychotropic side effects. The actions of endocannabinoids, such as anandamide are terminated by removal from the extracellular space, then subsequent enzymatic degradation by fatty-acid amide hydrolase (FAAH). In the present study, we compared the effect of a selective FAAH inhibitor, URB597, to that of a pan-cannabinoid receptor agonist HU210 in rat models of chronic inflammatory and neuropathic pain. Systemic administration of URB597 (0.3 mg kg(-1)) and HU210 (0.03 mg kg(-1)) both reduced the mechanical allodynia and thermal hyperalgesia in the CFA model of inflammatory pain. In contrast, HU210, but not URB597, reduced mechanical allodynia in the partial sciatic nerve-ligation model of neuropathic pain. HU210, but not URB597, produced a reduction in motor performance in unoperated rats. The effects of URB597 in the CFA model were dose dependent and were reduced by coadministration with the cannabinoid CB1 antagonist AM251 (1 mg kg(-1)), or the CB2 and SR144528 (1 mg kg(-1)). Coadministration with AM251 plus SR144528 completely reversed the effects of URB597. These findings suggest that the FAAH inhibitor URB597 produces cannabinoid CB1 and CB2 receptor-mediated analgesia in inflammatory pain states, without causing the undesirable side effects associated with cannabinoid receptor activation.

    Topics: Amidohydrolases; Animals; Benzamides; Carbamates; Chronic Disease; Disease Models, Animal; Enzyme Inhibitors; Hyperalgesia; Inflammation; Male; Motor Activity; Neuralgia; Pain; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1; Receptor, Cannabinoid, CB2; TRPV Cation Channels

2006
Analgesic effects of fatty acid amide hydrolase inhibition in a rat model of neuropathic pain.
    The Journal of neuroscience : the official journal of the Society for Neuroscience, 2006, Dec-20, Volume: 26, Issue:51

    Cannabinoid-based medicines have therapeutic potential for the treatment of pain. Augmentation of levels of endocannabinoids with inhibitors of fatty acid amide hydrolase (FAAH) is analgesic in models of acute and inflammatory pain states. The aim of this study was to determine whether local inhibition of FAAH alters nociceptive responses of spinal neurons in the spinal nerve ligation model of neuropathic pain. Electrophysiological studies were performed 14-18 d after spinal nerve ligation or sham surgery, and the effects of the FAAH inhibitor cyclohexylcarbamic acid 3-carbamoyl biphenyl-3-yl ester (URB597) on mechanically evoked responses of spinal neurons and levels of endocannabinoids were determined. Intraplantar URB597 (25 microg in 50 microl) significantly (p < 0.01) attenuated mechanically evoked responses of spinal neurons in sham-operated rats. Effects of URB597 were blocked by the cannabinoid 1 receptor (CB1) antagonist AM251 [N-1-(2,4-dichlorophenyl)-5-(4-iodophenyl)-4-methyl-N-1-piperidinyl-1H-pyrazole-3-carboxamide] (30 microg in 50 microl) and the opioid receptor antagonist naloxone. URB597 treatment increased levels of anandamide, 2-arachidonyl glycerol, and oleoyl ethanolamide in the ipsilateral hindpaw of sham-operated rats. Intraplantar URB597 (25 microg in 50 microl) did not, however, alter mechanically evoked responses of spinal neurons in spinal nerve ligated (SNL) rats or hindpaw levels of endocannabinoids. Intraplantar injection of a higher dose of URB597 (100 microg in 50 microl) significantly (p < 0.05) attenuated evoked responses of spinal neurons in SNL rats but did not alter hindpaw levels of endocannabinoids. Spinal administration of URB597 attenuated evoked responses of spinal neurons and elevated levels of endocannabinoids in sham-operated and SNL rats. These data suggest that peripheral FAAH activity may be altered or that alternative pathways of metabolism have greater importance in SNL rats.

    Topics: Amidohydrolases; Analgesics; Animals; Benzamides; Carbamates; Disease Models, Animal; Enzyme Inhibitors; Injections, Spinal; Male; Pain; Pain Measurement; Rats; Rats, Sprague-Dawley; Receptor, Cannabinoid, CB1

2006
Inhibitors of fatty acid amide hydrolase reduce carrageenan-induced hind paw inflammation in pentobarbital-treated mice: comparison with indomethacin and possible involvement of cannabinoid receptors.
    British journal of pharmacology, 2005, Volume: 146, Issue:3

    The in vivo effect of inhibitors of fatty acid amide hydrolase (FAAH) upon oedema volume and FAAH activity was evaluated in the carrageenan induced hind paw inflammation model in the mouse. Oedema was measured at two time points, 2 and 4 h, after intraplantar injection of carrageenan to anaesthetised mice. Intraperitoneal (i.p.) injections of the FAAH inhibitor URB597 (0.1, 0.3, 1 and 3 mg kg(-1)) 30 min prior to carrageenan administration, dose-dependently reduced oedema formation. At the 4 h time point, the ED(50) for URB597 was approximately 0.3 mg kg(-1). Indomethacin (5 mg kg(-1) i.p.) completely prevented the oedema response to carrageenan. The antioedema effects of indomethacin and URB597 were blocked by 3 mg kg(-1) i.p. of the CB(2) receptor antagonist SR144528. The effect of URB597 was not affected by pretreatment with the peroxisome proliferator-activated receptor gamma antagonist bisphenol A diglycidyl ether (30 mg kg(-1) i.p.) or the TRPV1 antagonist capsazepine (10 mg kg(-1) i.p.), when oedema was assessed 4 h after carrageenan administration. The CB(1) receptor antagonists AM251 (3 mg kg(-1) i.p.) and rimonabant (0.5 mg kg(-1) i.p.) gave inconsistent effects upon the antioedema effect of URB597. FAAH measurements were conducted ex vivo in the paws, spinal cords and brains of the mice. The activities of FAAH in the paws and spinal cords of the inflamed vehicle-treated mice were significantly lower than the corresponding activities in the noninflamed mice. PMSF treatment almost completely inhibited the FAAH activity in all three tissues, as did the highest dose of URB597 (3 mg kg(-1)) in spinal cord samples, whereas no obvious changes were seen ex vivo for the other treatments. In conclusion, the results show that in mice, treatment with indomethacin and URB597 produce SR144528-sensitive anti-inflammatory effects in the carrageenan model of acute inflammation.

    Topics: Amidohydrolases; Animals; Anti-Inflammatory Agents, Non-Steroidal; Benzamides; Brain; Camphanes; Cannabinoid Receptor Antagonists; Carbamates; Carrageenan; Disease Models, Animal; Enzyme Inhibitors; Hindlimb; Indomethacin; Inflammation; Male; Mice; Mice, Inbred C57BL; Pentobarbital; Phenylmethylsulfonyl Fluoride; Pyrazoles; Spinal Cord

2005