urb-597 has been researched along with Autism-Spectrum-Disorder* in 2 studies
2 other study(ies) available for urb-597 and Autism-Spectrum-Disorder
Article | Year |
---|---|
Targeting the inhibition of fatty acid amide hydrolase ameliorate the endocannabinoid-mediated synaptic dysfunction in a valproic acid-induced rat model of Autism.
Autism spectrum disorder (ASD) is a neurodevelopmental disorder, characterized by social interaction impairment, stereotypical/repetitive behaviors and emotional deregulation. The endocannabinoid (eCB) system plays a crucial role in modulating the behavioral traits that are typically core symptoms of ASD. The major molecular mechanisms underlying eCB-dependent long-term depression (eCB-LTD) are mediated by group 1 metabotropic glutamate receptor (mGluR)-induced removal of postsynaptic α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs). Recently, modulation of anandamide (AEA), one of the main endocannabinoids in the brain, has been reported to alter social behaviors in genetic models of ASD. On this basis, we investigated the effects of treatment and the synaptic mechanism underlying AEA-mediated signaling in prenatal exposure to valproic acid (VPA) in rats. We found that the social deficits, repetitive behaviors and abnormal emotion-related behaviors in VPA-exposed offspring were improved after treatment with an inhibitor of AEA degrading enzyme, URB597. Using an integrative approach combing electrophysiological and cellular mechanisms, the results showed that the impaired eCB-LTD, abnormal mGluR-mediated LTD (mGluR-LTD) and decreased removal of AMPAR subunits GluA1 and GluA2 were reversed by URB597 in the prefrontal cortex (PFC) of VPA-exposed offspring. Taken together, these results provide the first evidence that rescue of the ASD-like phenotype by URB597 is mediated by enhancing the mechanism of removal of AMPAR subunits GluA1/2 underlying AEA signaling in the PFC in a VPA-induced model of ASD. Topics: Amidohydrolases; Animals; Arachidonic Acids; Autism Spectrum Disorder; Benzamides; Carbamates; Disease Models, Animal; Endocannabinoids; Enzyme Inhibitors; Female; Long-Term Synaptic Depression; Neuronal Plasticity; Polyunsaturated Alkamides; Prefrontal Cortex; Pregnancy; Prenatal Exposure Delayed Effects; Protein Transport; Rats; Receptors, AMPA; Receptors, Metabotropic Glutamate; Social Behavior; Valproic Acid | 2020 |
Endocannabinoid signaling mediates oxytocin-driven social reward.
Marijuana exerts profound effects on human social behavior, but the neural substrates underlying such effects are unknown. Here we report that social contact increases, whereas isolation decreases, the mobilization of the endogenous marijuana-like neurotransmitter, anandamide, in the mouse nucleus accumbens (NAc), a brain structure that regulates motivated behavior. Pharmacological and genetic experiments show that anandamide mobilization and consequent activation of CB1 cannabinoid receptors are necessary and sufficient to express the rewarding properties of social interactions, assessed using a socially conditioned place preference test. We further show that oxytocin, a neuropeptide that reinforces parental and social bonding, drives anandamide mobilization in the NAc. Pharmacological blockade of oxytocin receptors stops this response, whereas chemogenetic, site-selective activation of oxytocin neurons in the paraventricular nucleus of the hypothalamus stimulates it. Genetic or pharmacological interruption of anandamide degradation offsets the effects of oxytocin receptor blockade on both social place preference and cFos expression in the NAc. The results indicate that anandamide-mediated signaling at CB1 receptors, driven by oxytocin, controls social reward. Deficits in this signaling mechanism may contribute to social impairment in autism spectrum disorders and might offer an avenue to treat these conditions. Topics: Analysis of Variance; Animals; Arachidonic Acids; Autism Spectrum Disorder; Benzamides; Benzodiazepines; Camphanes; Carbamates; Clozapine; Cocaine; Endocannabinoids; Immunohistochemistry; Infusions, Intraventricular; Lipids; Male; Mice; Mice, Inbred C57BL; Nucleus Accumbens; Oxytocin; Piperazines; Piperidines; Polyunsaturated Alkamides; Pyrazoles; Receptors, Cannabinoid; Reward; Signal Transduction; Social Behavior | 2015 |