umbelliprenin has been researched along with Inflammation* in 3 studies
3 other study(ies) available for umbelliprenin and Inflammation
Article | Year |
---|---|
Comparative evaluation of the protective effects of oral administration of auraptene and umbelliprenin against CFA-induced chronic inflammation with polyarthritis in rats.
This study aimed to evaluate the anti-inflammatory effect of Auraptene (AUR) and Umbelliprenin (UMB) in a rat model of rheumatoid arthritis (RA) induced by using complete Freund's adjuvant (CFA). Paw swelling of adjuvant arthritis rats measured at various times after CFA injection. Over 15 days of RA induction, mediator/cytokine-mediated processes involved in managing the regulation and resolving RA's inflammation were also quantified with ELISA. Histopathological changes were also assessed under a microscope 15 days after the CFA injection. AUR at all doses and UMB administration only at a 16 mM /kg administration dose significantly reduced CFA-induced paw edema level compared to the control group. UMB (64 and 32 mM) and AUR (64, 32, and 16 mM) could reduce the PGE2 (p < .0001-.01) and NO (p < .0001-.05) levels in the treatment groups compared to the negative control group. However, these compounds showed no significant effect on the TNF-α, IFN-γ, TGF-β, IL-4, and IL-10 levels than the control group (p > .05). Unlike indomethacin and prednisolone, treatment of rats with AUR (16, 32, and 64 mM/kg) and UMB (16 and 32 mM/kg) reduced the level of IL-2 (p < .0001). In all treatment groups, the serum level of IL-17 was significantly reduced compared to the CFA group (p < .001-0.05). We suggested AUR and UMB could diminish inflammation by reducing the serum level of IL-17 and could be considered a proper alternative in the treatment of IL-17 related inflammatory diseases such as rheumatoid arthritis. Given that AUR and UMB apply their anti-inflammatory effects by changing distinct cytokine release/inhibition patterns, their potential application in diverse inflammatory diseases seems different. Topics: Administration, Oral; Animals; Anti-Inflammatory Agents; Arthritis; Arthritis, Experimental; Arthritis, Rheumatoid; Coumarins; Cytokines; Edema; Freund's Adjuvant; Inflammation; Male; Protective Agents; Rats; Rats, Wistar; Umbelliferones | 2021 |
Umbelliprenin shows antitumor, antiangiogenesis, antimetastatic, anti-inflammatory, and immunostimulatory activities in 4T1 tumor-bearing Balb/c mice.
Umbelliprenin (UMB) has shown various pharmacological properties in vitro. We investigated the antineoplastic and immunostimulatory effects of UMB in 4T1 mammary-tumor-bearing mice. Two-hundred microliter of UMB (12.5 mg/ml) was intraperitoneally administrated to healthy and tumor-bearing female Balb/c mice for a period of 18 days. Data was analyzed using GraphPad Prism 5 software for Windows (version 5, La Jolla, CA). UMB caused a significant decrease in tumor size (P < 0.01). Serum interferon gamma (IFNγ) was augmented in both healthy and tumor-bearing animals (P < 0.01), and IL-4 declined in healthy animals (P < 0.01) treated with UMB. Expressions of Ki-67, VEGF, CD31, MMP2, MMP9, VCAM1, and NF-κB were significantly decreased in tumors from UMB-treated animals (P < 0.001), whereas E-Cadherin and TNFR1 expressions were markedly increased (P < 0.001). The rates of liver and lung metastases in UMB-administrated animals were smaller compared to the control. UMB can potently inhibit tumor growth, angiogenesis, metastasis, and inflammation and potentiate an antitumor immune response in vivo. However, further investigations are required to evaluate the UMB mechanisms of action in cancerous cells. Topics: Animals; Cell Line, Tumor; Cell Proliferation; Female; Humans; Inflammation; Interferon-gamma; Mammary Neoplasms, Animal; Mice; Mice, Inbred BALB C; Neoplasm Metastasis; Neoplasm Proteins; Neovascularization, Pathologic; Umbelliferones | 2018 |
Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening.
This protocol describes microsphere-based protease assays for use in flow cytometry and high-throughput screening. This platform measures a loss of fluorescence from the surface of a microsphere due to the cleavage of an attached fluorescent protease substrate by a suitable protease enzyme. The assay format can be adapted to any site or protein-specific protease of interest and results can be measured in both real time and as endpoint fluorescence assays on a flow cytometer. Endpoint assays are easily adapted to microplate format for flow cytometry high-throughput analysis and inhibitor screening. Topics: Animals; Biotinylation; Flow Cytometry; Fluorescence Resonance Energy Transfer; Green Fluorescent Proteins; High-Throughput Screening Assays; Humans; Inflammation; Kinetics; Microspheres; Peptide Hydrolases; Peptides; Reproducibility of Results; Temperature | 2010 |