ulixacaltamide and Seizures

ulixacaltamide has been researched along with Seizures* in 3 studies

Other Studies

3 other study(ies) available for ulixacaltamide and Seizures

ArticleYear
The T-type calcium channel antagonist, Z944, alters social behavior in Genetic Absence Epilepsy Rats from Strasbourg.
    Behavioural brain research, 2019, 04-01, Volume: 361

    Abnormalities in social behavior are a co-morbid symptom of idiopathic generalized epilepsies such as childhood absence epilepsy. The Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model is a spontaneously occurring absence epilepsy phenotype closely correlated to that of human absence epilepsies. Similar to the human conditions, GAERS display social abnormalities. Previous studies have only demonstrated social abnormalities in female GAERS, whereas social problems are observed in male and female patients. Seizures in GAERS result in part due to a gain-of-function missense mutation in the Cav3.2 T-type calcium channel gene. This study examined the effects of the pan-T-type calcium channel antagonist, Z944, on social interaction behaviors in male and female GAERS using an open field social interaction test. A second objective of this study was to examine the effects of Z944 on anxiety-like behavior in an open field locomotion test and elevated plus maze. Results showed a decrease in social activity in GAERS relative to non-epileptic control (NEC) rats. Acute, systemic Z944 (5 mg/kg; i.p.) consistently reduced introductory and aggressive behaviors in both GAERS and NECs whereas strain effects were observed for over-and-under crawl behaviors. In the open field locomotion test and elevated plus maze, Z944 increased anxiety-like behaviors in GAERS, whereas, Z944 produced inconsistent effects on anxiety-like behaviors in NECs. The results of this study suggest that the regulation of T-type calcium channel activity may be a useful strategy for the development of new therapeutic approaches for the treatment of social and affective abnormalities observed in absence epilepsy disorders.

    Topics: Animals; Anxiety; Behavior, Animal; Brain; Calcium Channel Blockers; Calcium Channels, T-Type; Disease Models, Animal; Electroencephalography; Epilepsy, Absence; Epilepsy, Generalized; Female; Locomotion; Male; Piperidines; Rats; Rats, Wistar; Seizures; Social Behavior

2019
Structure-Activity Relationship, Drug Metabolism and Pharmacokinetics Properties Optimization, and in Vivo Studies of New Brain Penetrant Triple T-Type Calcium Channel Blockers.
    Journal of medicinal chemistry, 2016, 12-08, Volume: 59, Issue:23

    Despite the availability of numerous antiepileptic drugs, 20-30% of epileptic patients are pharmacoresistant with seizures not appropriately controlled. Consequently, new strategies to address this unmet medical need are required. T-type calcium channels play a key role in neuronal excitability and burst firing, and selective triple T-type calcium channel blockers could offer a new way to treat various CNS disorders, in particular epilepsy. Herein we describe the identification of new 1,4-benzodiazepines as brain penetrant and selective triple T-type calcium channel blockers. From racemic hit 4, optimization work led to the preparation of pyridodiazepine 31c with improved physicochemical properties, solubility, and metabolic stability. The racemic mixture was separated by chiral preparative HPLC, and the resulting lead compound (3R,5S)-31c showed promising efficacy in the WAG/Rij-rat model of generalized nonconvulsive absence-like epilepsy.

    Topics: Animals; Brain; Calcium Channel Blockers; Calcium Channels, T-Type; Dose-Response Relationship, Drug; HEK293 Cells; Humans; Male; Microsomes, Liver; Molecular Structure; Rats; Rats, Inbred Strains; Seizures; Structure-Activity Relationship

2016
Z944, a Novel Selective T-Type Calcium Channel Antagonist Delays the Progression of Seizures in the Amygdala Kindling Model.
    PloS one, 2015, Volume: 10, Issue:8

    Temporal lobe epilepsy (TLE) is the most common form of drug resistant epilepsy. Current treatment is symptomatic, suppressing seizures, but has no disease modifying effect on epileptogenesis. We examined the effects of Z944, a potent T-type calcium channel antagonist, as an anti-seizure agent and against the progression of kindling in the amygdala kindling model of TLE. The anti-seizure efficacy of Z944 (5mg/kg, 10mg/kg, 30mg/kg and 100mg/kg) was assessed in fully kindled rats (5 class V seizures) as compared to vehicle, ethosuximide (ETX, 100mg/kg) and carbamazepine (30mg/kg). Each animal received the seven treatments in a randomised manner. Seizure class and duration elicited by six post-drug stimulations was determined. To investigate for effects in delaying the progression of kindling, naive animals received Z944 (30mg/kg), ETX (100mg/kg) or vehicle 30-minutes prior to each kindling stimulation up to a maximum of 30 stimulations, with seizure class and duration recorded after each stimulation. At the completion of drug treatment, CaV3.1, CaV3.2 and CaV3.3 mRNA expression levels were assessed in the hippocampus and amygdala using qPCR. Z944 was not effective at suppressing seizures in fully kindled rats compared to vehicle. Animals receiving Z944 required significantly more stimulations to evoke a class III (p<0.05), IV (p<0.01) or V (p<0.0001) seizure, and to reach a fully kindled state (p<0.01), than animals receiving vehicle. There was no significant difference in the mRNA expression of the T-type Ca2+ channels in the hippocampus or amygdala. Our results show that selectively targeting T-type Ca2+ channels with Z944 inhibits the progression of amygdala kindling. This could be a potential for a new therapeutic intervention to mitigate the development and progression of epilepsy.

    Topics: Acetamides; Amygdala; Animals; Anticonvulsants; Benzamides; Calcium Channel Blockers; Disease Models, Animal; Kindling, Neurologic; Piperidines; Rats; Seizures

2015