ulixacaltamide has been researched along with Epilepsy--Absence* in 6 studies
6 other study(ies) available for ulixacaltamide and Epilepsy--Absence
Article | Year |
---|---|
The T-type calcium channel antagonist, Z944, alters social behavior in Genetic Absence Epilepsy Rats from Strasbourg.
Abnormalities in social behavior are a co-morbid symptom of idiopathic generalized epilepsies such as childhood absence epilepsy. The Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model is a spontaneously occurring absence epilepsy phenotype closely correlated to that of human absence epilepsies. Similar to the human conditions, GAERS display social abnormalities. Previous studies have only demonstrated social abnormalities in female GAERS, whereas social problems are observed in male and female patients. Seizures in GAERS result in part due to a gain-of-function missense mutation in the Cav3.2 T-type calcium channel gene. This study examined the effects of the pan-T-type calcium channel antagonist, Z944, on social interaction behaviors in male and female GAERS using an open field social interaction test. A second objective of this study was to examine the effects of Z944 on anxiety-like behavior in an open field locomotion test and elevated plus maze. Results showed a decrease in social activity in GAERS relative to non-epileptic control (NEC) rats. Acute, systemic Z944 (5 mg/kg; i.p.) consistently reduced introductory and aggressive behaviors in both GAERS and NECs whereas strain effects were observed for over-and-under crawl behaviors. In the open field locomotion test and elevated plus maze, Z944 increased anxiety-like behaviors in GAERS, whereas, Z944 produced inconsistent effects on anxiety-like behaviors in NECs. The results of this study suggest that the regulation of T-type calcium channel activity may be a useful strategy for the development of new therapeutic approaches for the treatment of social and affective abnormalities observed in absence epilepsy disorders. Topics: Animals; Anxiety; Behavior, Animal; Brain; Calcium Channel Blockers; Calcium Channels, T-Type; Disease Models, Animal; Electroencephalography; Epilepsy, Absence; Epilepsy, Generalized; Female; Locomotion; Male; Piperidines; Rats; Rats, Wistar; Seizures; Social Behavior | 2019 |
The T-type calcium channel blocker Z944 reduces conditioned fear in Genetic Absence Epilepsy Rats from Strasbourg and the non-epileptic control strain.
Genetic Absence Epilepsy Rats from Strasbourg (GAERS) are a rodent model of childhood absence epilepsy (CAE) that display a gain-of-function mutation in the gene encoding the Cav3.2 T-type calcium channel. GAERS demonstrate heightened learning and delayed extinction of fear conditioning. Our objective in the present study was to examine the effects of the pan-T-type calcium channel blocker Z944 on the acquisition, consolidation and extinction of conditioned fear in GAERS and the non-epileptic control (NEC) strain. Z944 (10 mg/kg; ip) was administered 15 min prior to either acquisition, extinction day 1 (24 hr later), acquisition and extinction day 1, or during the consolidation (post-acquisition) of tone-cued fear conditioning. Extinction was examined 24 and 48 hr after conditioning. In drug naïve GAERS, increased freezing during the acquisition and extinction phases of fear conditioning was found. Short-term effects of Z944 on performance were observed as Z944 increased freezing during testing on the day it was administered. Z944 administered prior to the acquisition phase had a long-term effect on extinction. Specifically, both GAERS and NECs showed a decrease in freezing during extinction relative to drug naïve GAERS and NEC rats respectively. Regardless of strain or treatment, female rats showed reduced extinction of fear relative to male rats. These results demonstrate that T-type calcium channels contribute to the neural systems that mediate the learning and memory of conditioned fear. Overall, these findings suggest that T-type calcium channel blockers show promise in the treatment of learning impairments observed in disorders such as CAE. Topics: Animals; Calcium Channel Blockers; Calcium Channels, T-Type; Conditioning, Classical; Disease Models, Animal; Epilepsy, Absence; Extinction, Psychological; Fear; Female; Male; Memory; Piperidines; Rats | 2019 |
Sociability impairments in Genetic Absence Epilepsy Rats from Strasbourg: Reversal by the T-type calcium channel antagonist Z944.
Childhood absence epilepsy (CAE) is associated with interictal co-morbid symptoms including abnormalities in social behaviour. Genetic Absence Epilepsy Rats from Strasbourg (GAERS) is a model of CAE that exhibits physiological and behavioural alterations characteristic of the human disorder. However, it is unknown if GAERS display the social deficits often observed in CAE. Sociability in rodents is thought to be mediated by neural circuits densely populated with T-type calcium channels and GAERS contain a missense mutation in the Cav3.2 T-type calcium channel gene. Thus, the objective of this study was to examine the effects of the clinical stage pan-T-type calcium channel blocker, Z944, on sociability behaviour in male and female GAERS and non-epileptic control (NEC) animals. Female GAERS showed reduced sociability in a three-chamber sociability task whereas male GAERS, male NECs, and female NECs all showed a preference for the chamber containing a stranger rat. In drug trials, pre-treatment with 5mg/kg of Z944 normalized sociability in female GAERS. In contrast, female NECs showed impaired sociability following Z944 treatment. Dose-dependent decreases in locomotor activity were noted following Z944 treatment in both strains. Treatment with 10mg/kg of Z944 altered exploration such that only 8 of the 16 rats tested explored both sides of the testing chamber. In those that explored the chamber, significant preference for the stranger rat was observed in GAERS but not NECs. Overall, the data suggest that T-type calcium channels are critical in regulating sociability in both GAERS and NEC animals. Future research should focus on T-type calcium channels in the treatment of sociability deficits observed in disorders such as CAE. Topics: Acetamides; Analysis of Variance; Animals; Benzamides; Calcium Channel Blockers; Calcium Channels, T-Type; Disease Models, Animal; Epilepsy, Absence; Exploratory Behavior; Female; Locomotion; Male; Piperidines; Rats; Social Behavior Disorders | 2017 |
The T-type calcium channel antagonist Z944 rescues impairments in crossmodal and visual recognition memory in Genetic Absence Epilepsy Rats from Strasbourg.
Childhood absence epilepsy (CAE) is often comorbid with behavioral and cognitive symptoms, including impaired visual memory. Genetic Absence Epilepsy Rats from Strasbourg (GAERS) is an animal model closely resembling CAE; however, cognition in GAERS is poorly understood. Crossmodal object recognition (CMOR) is a recently developed memory task that examines not only purely visual and tactile memory, but also requires rodents to integrate sensory information about objects gained from tactile exploration to enable visual recognition. Both the visual and crossmodal variations of the CMOR task rely on the perirhinal cortex, an area with dense expression of T-type calcium channels. GAERS express a gain-in-function missense mutation in the Cav3.2 T-type calcium channel gene. Therefore, we tested whether the T-type calcium channel blocker Z944 dose dependently (1, 3, 10mg/kg; i.p.) altered CMOR memory in GAERS compared to the non-epileptic control (NEC) strain. GAERS demonstrated recognition memory deficits in the visual and crossmodal variations of the CMOR task that were reversed by the highest dose of Z944. Electroencephalogram recordings determined that deficits in CMOR memory in GAERS were not the result of seizures during task performance. In contrast, NEC showed a decrease in CMOR memory following Z944 treatment. These findings suggest that T-type calcium channels mediate CMOR in both the GAERS and NEC strains. Future research into the therapeutic potential of T-type calcium channel regulation may be particularly fruitful for the treatment of CAE and other disorders characterized by visual memory deficits. Topics: Acetamides; Animals; Benzamides; Calcium Channels, T-Type; Disease Models, Animal; Electroencephalography; Epilepsy, Absence; Female; Male; Memory; Memory Disorders; Piperidines; Touch | 2016 |
The T-type calcium channel antagonist Z944 disrupts prepulse inhibition in both epileptic and non-epileptic rats.
The role of T-type calcium channels in brain diseases such as absence epilepsy and neuropathic pain has been studied extensively. However, less is known regarding the involvement of T-type channels in cognition and behavior. Prepulse inhibition (PPI) is a measure of sensorimotor gating which is a basic process whereby the brain filters incoming stimuli to enable appropriate responding in sensory rich environments. The regulation of PPI involves a network of limbic, cortical, striatal, pallidal and pontine brain areas, many of which show high levels of T-type calcium channel expression. Therefore, we tested the effects of blocking T-type calcium channels on PPI with the potent and selective T-type antagonist Z944 (0.3, 1, 3, 10mg/kg; i.p.) in adult Wistar rats and two related strains, the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) and Non-Epileptic Control (NEC). PPI was tested using a protocol that varied prepulse intensity (3, 6, and 12dB above background) and prepulse-pulse interval (30, 50, 80, 140ms). Z944 decreased startle in the Wistar strain at the highest dose relative to lower doses. Z944 dose-dependently disrupted PPI in the Wistar and GAERS strains with the most potent effect observed with the higher doses. These findings suggest that T-type calcium channels contribute to normal patterns of brain activity that regulate PPI. Given that PPI is disrupted in psychiatric disorders, future experiments that test the specific brain regions involved in the regulation of PPI by T-type calcium channels may help inform therapeutic development for those suffering from sensorimotor gating impairments. Topics: Acetamides; Acoustic Stimulation; Analysis of Variance; Animals; Benzamides; Calcium Channel Blockers; Calcium Channels, T-Type; Disease Models, Animal; Dose-Response Relationship, Drug; Electric Stimulation; Epilepsy, Absence; Female; Male; Piperidines; Prepulse Inhibition; Rats, Wistar; Reflex, Startle; Species Specificity | 2016 |
T-type calcium channel blockers that attenuate thalamic burst firing and suppress absence seizures.
Absence seizures are a common seizure type in children with genetic generalized epilepsy and are characterized by a temporary loss of awareness, arrest of physical activity, and accompanying spike-and-wave discharges on an electroencephalogram. They arise from abnormal, hypersynchronous neuronal firing in brain thalamocortical circuits. Currently available therapeutic agents are only partially effective and act on multiple molecular targets, including γ-aminobutyric acid (GABA) transaminase, sodium channels, and calcium (Ca(2+)) channels. We sought to develop high-affinity T-type specific Ca(2+) channel antagonists and to assess their efficacy against absence seizures in the Genetic Absence Epilepsy Rats from Strasbourg (GAERS) model. Using a rational drug design strategy that used knowledge from a previous N-type Ca(2+) channel pharmacophore and a high-throughput fluorometric Ca(2+) influx assay, we identified the T-type Ca(2+) channel blockers Z941 and Z944 as candidate agents and showed in thalamic slices that they attenuated burst firing of thalamic reticular nucleus neurons in GAERS. Upon administration to GAERS animals, Z941 and Z944 potently suppressed absence seizures by 85 to 90% via a mechanism distinct from the effects of ethosuximide and valproate, two first-line clinical drugs for absence seizures. The ability of the T-type Ca(2+) channel antagonists to inhibit absence seizures and to reduce the duration and cycle frequency of spike-and-wave discharges suggests that these agents have a unique mechanism of action on pathological thalamocortical oscillatory activity distinct from current drugs used in clinical practice. Topics: Acetamides; Benzamides; Calcium Channel Blockers; Calcium Channels, T-Type; Epilepsy, Absence; Humans; Piperidines; Thalamus | 2012 |