ulipristal and Ovarian-Neoplasms

ulipristal has been researched along with Ovarian-Neoplasms* in 1 studies

Other Studies

1 other study(ies) available for ulipristal and Ovarian-Neoplasms

ArticleYear
Growth inhibition induced by antiprogestins RU-38486, ORG-31710, and CDB-2914 in ovarian cancer cells involves inhibition of cyclin dependent kinase 2.
    Investigational new drugs, 2012, Volume: 30, Issue:3

    Antiprogestins have been largely utilized in reproductive medicine, yet their repositioning for oncologic use is rapidly emerging. In this study we investigated the molecular mediators of the anti-ovarian cancer activity of the structurally related antiprogestins RU-38486, ORG-31710 and CDB-2914. We studied the responses of wt p53 OV2008 and p53 null SK-OV-3 cells to varying doses of RU-38486, ORG-31710 and CDB-2914. The steroids inhibited the growth of both cell lines with a potency of RU-38486 > ORG-31710 > CDB-2914, and were cytostatic at lower doses but lethal at higher concentrations. Antiprogestin-induced lethality associated with morphological features of apoptosis, hypodiploid DNA content, DNA fragmentation, and cleavage of executer caspase substrate PARP. Cell death ensued despite RU-38486 caused transient up-regulation of anti-apoptotic Bcl-2, ORG-31710 induced transient up-regulation of inhibitor of apoptosis XIAP, and CDB-2914 up-regulated both XIAP and Bcl-2. The antiprogestins induced accumulation of Cdk inhibitors p21(cip1) and p27(kip1) and increased association of p21(cip1) and p27(kip1) with Cdk-2. They also promoted nuclear localization of p21(cip1) and p27(kip1), reduced the nuclear abundances of Cdk-2 and cyclin E, and blocked the activity of Cdk-2 in both nucleus and cytoplasm. The cytotoxic potency of the antiprogestins correlated with the magnitude of the inhibition of Cdk-2 activity, ranging from G1 cell cycle arrest towards cell death. Our results suggest that, as a consequence of their cytostatic and lethal effects, antiprogestin steroids of well-known contraceptive properties emerge as attractive new agents to be repositioned for ovarian cancer therapeutics.

    Topics: Antineoplastic Agents; Cell Cycle; Cell Line, Tumor; Cell Proliferation; Cell Survival; Cyclin-Dependent Kinase 2; Cyclin-Dependent Kinase Inhibitor p21; Cyclin-Dependent Kinase Inhibitor p27; Cytostatic Agents; DNA Fragmentation; Estrenes; Female; Furans; Hormone Antagonists; Humans; Mifepristone; Norpregnadienes; Ovarian Neoplasms

2012