ucn-1028-c and Leukemia

ucn-1028-c has been researched along with Leukemia* in 1 studies

Other Studies

1 other study(ies) available for ucn-1028-c and Leukemia

ArticleYear
Protein kinase C modulates cytosolic free calcium by stimulating calcium pump activity in Jurkat T cells.
    Cell calcium, 1995, Volume: 18, Issue:6

    Although protein kinase C (PKC) activation has been shown to inhibit Ca2+ influx in T lymphocytes, the role of PKC on Ca2+ sequestration or extrusion processes has not been fully explored. We examined the effect of CD3 stimulation and PKC activators on cytosolic Ca2+ (Ca2+i) extrusion and 45Ca2+ efflux in human leukemic Jurkat T cells. Treatment of Fura-2 loaded cells with phorbol 12-myristate 13-acetate (PMA) or thymeleatoxin (THYM) resulted in a decrease in Ca2+i both in the presence and absence of extracellular Ca2+, whereas inactive phorbol esters had no effect. PKC activators added at the peak of a Ca2+i transient induced by anti-CD3 mAb, ionomycin or thapsigargin (TG) stimulated the rate and extent of return of Ca2+i to basal levels by 17-53%. PKC stimulation of the Ca2+i decline was not enhanced by the presence of Na+, indicating that PKC activators increase Ca2+ pump activity rather than a Na+/Ca2+ exchange mechanism. As CD3 receptor activation enhanced the Ca2+i decline in TG-treated cells, antigen-mediated activation of phospholipase C (PLC) signaling includes enhanced Ca2+ extrusion at the plasma membrane. The effect of PKC activators on parameters of Ca2+i extrusion were further explored. PMA significantly increased the rate of Ca2+ extrusion in TG-treated cells from 0.28 +/- 0.02 to 0.35 +/- 0.03 s-1 (mean +/- SEM) and stimulated the initial rate of 45Ca2+ efflux by 69% compared to inactive phorbol ester treated cells. The effects of PKC activation on the Ca2+i decline were eliminated by PKC inhibitors, PKC down regulation (24 h PMA pretreatment), ATP-depletion and conditions that inhibited the Ca2+ pump. In contrast, pretreatment of cells with okadaic acid enhanced the PMA-stimulated response. We suggest that Jurkat T cells contain a PKC-sensitive Ca2+ extrusion mechanism likely to be the Ca2+ pump. In lymphocytes, receptor/PLC-linked PKC activation modulates Ca2+i not only by inhibiting Ca2+ influx but also by stimulating plasma membrane Ca2+i extrusion.

    Topics: Alkaloids; Calcium; Calcium-Transporting ATPases; Cytosol; Enzyme Inhibitors; Fluorescent Dyes; Fura-2; Humans; Ionomycin; Ionophores; Lanthanum; Leukemia; Naphthalenes; Phorbol Esters; Protein Kinase C; Sodium; Staurosporine; T-Lymphocytes; Terpenes; Tetradecanoylphorbol Acetate; Thapsigargin; Tumor Cells, Cultured

1995