ucn-1028-c has been researched along with Insulin-Resistance* in 4 studies
4 other study(ies) available for ucn-1028-c and Insulin-Resistance
Article | Year |
---|---|
Reduced expression of adipose triglyceride lipase enhances tumor necrosis factor alpha-induced intercellular adhesion molecule-1 expression in human aortic endothelial cells via protein kinase C-dependent activation of nuclear factor-kappaB.
We examined the effects of adipose triglyceride lipase (ATGL) on the initiation of atherosclerosis. ATGL was recently identified as a rate-limiting triglyceride (TG) lipase. Mutations in the human ATGL gene are associated with neutral lipid storage disease with myopathy, a rare genetic disease characterized by excessive accumulation of TG in multiple tissues. The cardiac phenotype, known as triglyceride deposit cardiomyovasculopathy, shows massive TG accumulation in both coronary atherosclerotic lesions and the myocardium. Recent reports show that myocardial triglyceride content is significantly higher in patients with prediabetes or diabetes and that ATGL expression is decreased in the obese insulin-resistant state. Therefore, we investigated the effect of decreased ATGL activity on the development of atherosclerosis using human aortic endothelial cells. We found that ATGL knockdown enhanced monocyte adhesion via increased expression of TNFα-induced intercellular adhesion molecule-1 (ICAM-1). Next, we determined the pathways (MAPK, PKC, or NFκB) involved in ICAM-1 up-regulation induced by ATGL knockdown. Both phosphorylation of PKC and degradation of IκBα were increased in ATGL knockdown human aortic endothelial cells. In addition, intracellular diacylglycerol levels and free fatty acid uptake via CD36 were significantly increased in these cells. Inhibition of the PKC pathway using calphostin C and GF109203X suppressed TNFα-induced ICAM-1 expression. In conclusion, we showed that ATGL knockdown increased monocyte adhesion to the endothelium through enhanced TNFα-induced ICAM-1 expression via activation of NFκB and PKC. These results suggest that reduced ATGL expression may influence the atherogenic process in neutral lipid storage diseases and in the insulin-resistant state. Topics: Aorta; Atherosclerosis; CD36 Antigens; Cell Adhesion; Endothelial Cells; Enzyme Inhibitors; Gene Knockdown Techniques; Humans; I-kappa B Proteins; Indoles; Insulin Resistance; Intercellular Adhesion Molecule-1; Lipase; Maleimides; Monocytes; Naphthalenes; NF-kappa B; NF-KappaB Inhibitor alpha; Phosphorylation; Protein Kinase C; Signal Transduction; Tumor Necrosis Factor-alpha; U937 Cells; Up-Regulation | 2011 |
Impaired response to insulin associated with protein kinase C in chronic fructose-induced hypertension.
A fructose-enriched diet induces an increase in blood pressure associated with metabolic alterations in rats. Our hypothesis was that an increase in protein kinase C (PKC) activation, reported in the acute period of fructose overload, and an impaired vessel's response to vasoactive substances contribute to maintain elevated blood pressure levels in the chronic period. The aims of this study were to investigate in this animal model of hypertension: (1) if the increase in PKC activation was also found in the chronic stage; (2) the involvement of nitric oxide and insulin in the vessel's response; and plasma atrial natriuretic factor and nitrites/nitrates (nitric oxide metabolites) behavior. We evaluated the effects of: PKC-stimulator 12,13-phorbol dibutyrate, phenylephrine, insulin, nitric oxide synthase-inhibitor NG-nitro-L-arginine methyl esther (L-NAME) and PKC-inhibitor Calphostin C on aortic rings responses of Sprague-Dawley rats: fructose-fed and control. The fructose-fed group showed higher contractility to 12,13-phorbol dibutyrate than the control group in aortic rings pre-incubated with insulin, and this difference disappeared with L-NAME. The response to phenylephrine in rings pre-incubated with Calphostin C was decreased in the fructose-fed group and increased with Calphostin C plus L-NAME. Fructose-fed rats showed higher levels of plasma atrial natriuretic factor and nitrites/nitrates than controls. In conclusion, chronic fructose feeding seems to develop an impaired response to insulin, dependent on nitric oxide, suggesting a PKC alteration. Vasorelaxant agents, such as atrial natriuretic factor and nitric oxide, would behave as compensatory mechanisms in response to high blood pressure. Topics: Animals; Atrial Natriuretic Factor; Blood Pressure; Body Weight; Enzyme Activators; Enzyme Inhibitors; Fructose; Hypertension; Hypoglycemic Agents; Insulin; Insulin Resistance; Male; Muscle Contraction; Muscle, Smooth, Vascular; Naphthalenes; NG-Nitroarginine Methyl Ester; Nitric Oxide; Nitric Oxide Synthase; Phorbol 12,13-Dibutyrate; Protein Kinase C; Rats; Rats, Sprague-Dawley | 2002 |
Development of glucose-induced insulin resistance in muscle requires protein synthesis.
Muscles and fat cells develop insulin resistance when exposed to high concentrations of glucose and insulin. We used an isolated muscle preparation incubated with high levels of glucose and insulin to further evaluate how glucose-induced insulin resistance (GIIR) is mediated. Incubation with 2 milliunits/ml insulin and 36 mm glucose for 5 h resulted in an approximately 50% decrease in insulin-stimulated muscle glucose transport. The decrease in insulin responsiveness of glucose transport induced by glucose was not due to impaired insulin signaling, as insulin-stimulated phosphatidylinositol 3-kinase activity and protein kinase B phosphorylation were not reduced. It has been hypothesized that entry of glucose into the hexosamine biosynthetic pathway with accumulation of UDP-N-acetylhexosamines (UDP-HexNAcs) mediates GIIR. However, inhibition of the rate-limiting enzyme GFAT (glutamine:fructose-6-phosphate amidotransferase) did not protect against GIIR despite a marked reduction of UDP-HexNAcs. The mRNA synthesis inhibitor actinomycin D and the protein synthesis inhibitor cycloheximide both completely protected against GIIR despite the massive increases in UDP-HexNAcs and glycogen that resulted from increased glucose entry. Activation of AMP-activated protein kinase also protected against GIIR. These results provide evidence that GIIR can occur in muscle without increased accumulation of hexosamine pathway end products, that neither high glycogen concentration nor impaired insulin signaling is responsible for GIIR, and that synthesis of a protein with a short half-life mediates GIIR. They also suggest that dephosphorylation of a transcription factor may be involved in the induction of GIIR. Topics: Animals; Enzyme Inhibitors; Glucose; Glucose-6-Phosphate; In Vitro Techniques; Insulin; Insulin Resistance; Male; Muscle Proteins; Muscle, Skeletal; Naphthalenes; Protein Kinase C; Rats; Rats, Wistar; Signal Transduction | 2001 |
Antioxidants improve impaired insulin-mediated glucose uptake and prevent migration and proliferation of cultured rabbit coronary smooth muscle cells induced by high glucose.
To explore the role of intracellular oxidative stress in high glucose-induced atherogenesis, we examined the effect of probucol and/or alpha-tocopherol on the migration and growth characteristics of cultured rabbit coronary vascular smooth muscle cells (VSMCs).. Chronic high-glucose-medium (22. 2 mmol/L) treatment increased platelet-derived growth factor (PDGF)-BB-mediated VSMC migration, [3H]thymidine incorporation, and cell number compared with VSMCs treated with normal-glucose medium (5.6 mmol/L+16.6 mmol/L mannose). Probucol and alpha-tocopherol significantly suppressed high glucose-induced increase in VSMC migration, cell number, and [3H]thymidine incorporation. Probucol and alpha-tocopherol suppressed high glucose-induced elevation of the cytosolic ratio of NADH/NAD+, phospholipase D, and membrane-bound protein kinase C activation. Probucol, alpha-tocopherol, and calphostin C improved the high glucose-induced suppression of insulin-mediated [3H]deoxyglucose uptake. Chronic high-glucose treatment increased the oxidative stress, which was significantly suppressed by probucol, alpha-tocopherol, suramin, and calphostin C.. These findings suggest that probucol and alpha-tocopherol may suppress high glucose-induced VSMC migration and proliferation via suppression of increases in the cytosolic ratio of free NADH/NAD+, phospholipase D, and protein kinase C activation induced by high glucose, which result in reduction in intracellular oxidative stress. Topics: Animals; Antioxidants; Becaplermin; Biological Transport, Active; Cell Cycle; Cell Division; Cell Movement; Cells, Cultured; Coronary Vessels; Enzyme Activation; Enzyme Inhibitors; Flow Cytometry; Fructose; Glucose; Insulin; Insulin Resistance; Muscle, Smooth, Vascular; NAD; Naphthalenes; Oxidation-Reduction; Oxidative Stress; Phospholipase D; Platelet-Derived Growth Factor; Probucol; Protein Kinase C; Proto-Oncogene Proteins c-sis; Rabbits; Suramin; Vitamin E | 1999 |