ucn-1028-c has been researched along with Glioma* in 12 studies
1 review(s) available for ucn-1028-c and Glioma
Article | Year |
---|---|
Targeting protein kinase C: new therapeutic opportunities against high-grade malignant gliomas?
A large body of evidence suggests that the abnormal phenotype of neoplastic astrocytes, including their excessive proliferation rate and high propensity to invade surrounding tissues, results from mutations in critical genes involved in key cellular events. These genetic alterations can affect cell-surface-associated receptors, elements of signaling pathways, or components of the cell cycle clock, conferring a gain or a loss of relevant metabolic functions of the cells. The understanding of such phenomena may allow the development of more efficacious forms of cancer treatment. Examples are therapies specifically directed against overexpressed epidermal growth factor receptor, hyperactive Ras, excessively stimulated Raf-1, overproduced ornithine decarboxylase, or aberrantly activated cyclin-dependent kinases. The applicability of some of these approaches is now being assessed in patients suffering from primary malignant central nervous system tumors that are not amenable to current therapeutic modalities. Another potentially useful therapeutic strategy against such tumors involves the inhibition of hyperactive or overexpressed protein kinase C (PKC). This strategy is justified by the decrease in cell proliferation and invasion following inhibition of the activity of this enzyme observed in preclinical glioma models. Thus, interference with PKC activity may represent a novel form of experimental cancer treatment that may simultaneously restrain the hyperproliferative state and the invasive capacity of high-grade malignant gliomas without inducing the expected toxicity of classical cytotoxic agents. Of note, the experimental use of PKC-inhibiting agents in patients with refractory high-grade malignant gliomas has indeed led to some clinical responses. The present paper reviews the current status of the biochemistry and molecular biology of PKC, as well as the possibilities for developing novel anti-PKC-based therapies for central nervous system malignancies. Topics: Adolescent; Adult; Antineoplastic Agents; Apoptosis; Bryostatins; Cell Division; Child; Child, Preschool; Enzyme Activation; Enzyme Inhibitors; Glioma; Humans; Infant; Lactones; Macrolides; Mutation; Naphthalenes; Neoplasm Invasiveness; Neoplasm Proteins; Phenotype; Protein Kinase C; Sphingosine; Staurosporine | 2002 |
11 other study(ies) available for ucn-1028-c and Glioma
Article | Year |
---|---|
Differential effects of photofrin, 5-aminolevulinic acid and calphostin C on glioma cells.
The invasive nature of malignant gliomas makes treatment by surgery alone extremely difficult. However, the preferential accumulation of photosensitisers in neoplastic tissues suggests photodynamic therapy (PDT) may be useful as an adjuvant therapy following tumour resection. In this study, the potential use of three different photosensitisers, namely Photofrin, 5-aminolevulinic acid (5-ALA) and calphostin C in the treatment of glioma was investigated. The uptake, cytotoxicity on U87 and GBM6840 glioma cell lines were determined by flow cytometry and MTT assay respectively. Their effect on glioma cell invasiveness was evaluated by (1) measuring the levels of matrix degradation enzymes matrix metalloproteinase (MMP)-2 and -9 using gelatin zymography, and (2) Matrigel invasion assay. The results showed that uptake of calphostin C reached saturation within 2 h, while Photofrin and 5-ALA induced protoporphyrin IX (PpIX) levels elevated steadily up to 24 h. Photocytotoxic effect on the two glioma cell lines was similar with LD50 at optimal uptake: 1 microg/mL Photofrin at 1.5 J/cm(2); 1 mM 5-ALA at 2 J/cm(2) and 100 nM calphostin C at 2 J/cm(2). The inhibition in cell proliferation after Photofrin treatment was similar for both cell lines, which correlated to more cells being arrested in the G0/G1 phase of the cell cycle (P<0.01). By contrast, U87 was more sensitive to calphostin C whereas GBM6840 was more susceptible to 5-ALA treatment. The ability of both cell lines to migrate through the Matrigel artificial basement membrane was significantly reduced after PDT (P<0.001). This might be due to a decreased production in MMP-2 and MMP-9, together with the reduction of adhesion molecule expression. Photofrin was most superior in inhibiting cell invasion and calphostin C was least effective in reducing adhesion molecule expression. Taken together, PDT could be useful in the treatment of gliomas but the choice of photosensitisers must be taken into consideration. Topics: Aminolevulinic Acid; Cell Adhesion; Cell Adhesion Molecules; Cell Line, Tumor; Cell Proliferation; Dihematoporphyrin Ether; Glioma; Humans; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Naphthalenes; Neoplasm Invasiveness; Photosensitizing Agents | 2006 |
Sensitivity of human glioma U-373MG cells to radiation and the protein kinase C inhibitor, calphostin C.
We assessed the radiosensitivity of the grade III human glioma cell line U-373MG by investigating the effects of radiation and the specific protein kinase C inhibitor, calphostin C on the cell cycle and cell proliferation. Irradiated glioma U-373MG cells progressed through G1-S and underwent an arrest in G2-M phase. The radiosensitivity of U-373MG cells to graded doses of either photons or electrons was determine by microculture tetrazolium assay. The data was fitted to the linear-quadratic model. The proliferation curves demonstrated that U-373MG cells appear to be highly radiation resistant since 8 Gy was required to achieve 50% cell mortality. Compared to radiation alone, exposure to calphostin C (250 nM) 1 h prior to radiation decreased the proliferation of U-373MG by 76% and calphostin C provoked a weakly synergistic effect in concert with radiation. Depending on the time of application following radiation, calphostin C produced an additive or less than additive effect on cell proliferation. We postulate that the enhanced radiosensitivity observed when cells are exposed to calphostin C prior to radiation may be due to direct or indirect inhibition of protein kinase C isozymes required for cell cycle progression. Topics: Brain Neoplasms; Cell Cycle; Cell Division; Enzyme Inhibitors; Glioma; Humans; Naphthalenes; Protein Kinase C; Radiation, Ionizing; Tumor Cells, Cultured | 2001 |
Ultrastructural study of protein kinase C-betaII localization during the cell cycle of human glioma cells.
Transmission electron microscopy and immunogold labeling were used to determine how PKC-betaII is localized at stages in the cell cycle of the human glioma cell line U-373MG. Results show that immunogold particles in both dimethylsulfoxide (DMSO) and calphostin C (0.5 microM)-treated cells were mainly located in the cytoplasm. The concentration of gold particles in the nucleus was relatively small and constant throughout the cell cycle of both DMSO and calphostin C treated cells. Micrographs revealed changes in PKC-betaII during the cell cycle. The concentration of gold particles in the DMSO-treated cells was constant until 8 h. Subsequently, cytoplasmic PKC-betaII oscillated with an increased at 10 h, a rapid decrease at 12 h, and a rise at 14 h. The concentration of the gold particles then gradually decreased. In contrast, immunogold labeling in calphostin C-treated cells increased gradually up to 10 h. Subsequently, the pattern of PKC-betaII labeling in calphostin C-treated cells recapitulated those of control cells as seen by the rapid decline of PKC-betaII labeling at 12 h and its re-accumulation at 14 h. Additionally, there was a rapid increase at 20 h. Western blots of PKC-betaII showed constant PKC-betaII immunoreactivity throughout the cell cycle. In comparison to Western blots, in-situ immunogold labeling revealed changes in PKC-II immunoreactivity at 10 h and 14 h. This technique may represent intracellular immunoreactivity of PKC-betaII. The results from the immunogold labeling technique suggest that binding of calphostin C to the regulatory domain of PKC-betaII provokes a conformation change in PKC-betaII, preventing its activation and degradation. Topics: Blotting, Western; Brain Neoplasms; Cell Cycle; Dimethyl Sulfoxide; Glioma; Humans; Immunohistochemistry; Isoenzymes; Microscopy, Electron; Naphthalenes; Protein Kinase C; Protein Kinase C beta; Staining and Labeling; Tumor Cells, Cultured | 2001 |
The role of protein kinase C in the regulation of serotonin-2A receptor expression.
We have investigated in C6 glioma cells the involvement of protein kinase C (PKC) in the regulation of serotonin-(2A) receptor (5-HT(2A) receptor) expression by agonist treatment. Comparison of the time-courses of agonist-induced downregulation of receptor number and mRNA indicate that a decrease in the number of 5-HT(2A) receptor binding sites in response to serotonin (5-HT) treatment is preceded by a decrease in 5-HT(2A) receptor mRNA. This decrease in 5-HT(2A) receptor mRNA as a result of agonist exposure was not due to a change in the stability or half-life of the transcript. Pretreatment of cells with the PKC inhibitor bisindolylmaleimide blocked the decrease in 5-HT(2A) receptor mRNA levels, and attenuated the down-regulation of 5-HT(2A) receptor binding sites induced by treatment with 5-HT. Experiments performed with the PKC inhibitors calphostin C and Gö 6976 confirmed that PKC was involved in the regulation of 5-HT(2A) receptor mRNA by agonist and implicate the conventional subgroup of PKC isoforms. Western blot analysis, using isoform-specific anti-PKC antibodies showed that under our culture conditions C6 glioma cells express the conventional isoforms PKC alpha, PKC gamma, as well as the novel isoforms PKC delta, PKC epsilon, and the atypical isoforms PKC lambda and PKC iota. Upon treatment with 5-HT for 10 min levels of the conventional isoforms PKC alpha and PKC gamma increased in the nuclear fraction. Taken together, our results implicate PKC alpha and/or PKC gamma in the regulation of 5-HT(2A) mRNA receptor and binding sites in response to agonist treatment. Topics: Animals; Binding Sites; Carbazoles; Down-Regulation; Enzyme Induction; Gene Expression Regulation; Gene Expression Regulation, Neoplastic; Glioma; Indoles; Maleimides; Mice; Naphthalenes; Neoplasm Proteins; Protein Isoforms; Protein Kinase C; Receptor, Serotonin, 5-HT2A; Receptors, Serotonin; RNA, Messenger; RNA, Neoplasm; Serotonin; Signal Transduction; Tumor Cells, Cultured | 2001 |
Sphingosine 1-phosphate induces expression of early growth response-1 and fibroblast growth factor-2 through mechanism involving extracellular signal-regulated kinase in astroglial cells.
In rat type I astrocytes and C6 glioma cells, sphingosine 1-phosphate (S1P) clearly induced the expression of fibroblast growth factor-2 (FGF-2) mRNA to an extent comparable to that achieved by platelet-derived growth factor (PDGF) and endothelin. In C6 cells, Western blotting showed that S1P also induced expression of early growth response-1 (Egr-1), one of the immediate early gene products and an essential transcriptional factor for FGF-2 expression. On the other hand, sphingosine, a substrate for sphingosine kinase which forms intracellular S1P, was a very weak activator for the expression of either FGF-2 or Egr-1. The S1P-induced Egr-1 expression was partially inhibited by treatment of the cells with either calphostin C, an inhibitor of protein kinase C (PKC), or pertussis toxin (PTX), and completely inhibited by the combination of these agents. Essentially, the same inhibitory pattern by these agents has been observed for S1P-induced extracellular signal-regulated kinase (ERK) activation. The S1P-induced expression of Egr-1 was also completely inhibited in association with complete inhibition of ERK by PD 98059, an ERK kinase inhibitor. Thus, the S1P-induced activation of the Egr-1/FGF-2 system may be mediated through ERK activation, which may involve at least two signaling pathways, i.e., a PTX-sensitive G-protein-dependent pathway and a PKC-dependent pathway. Topics: Animals; Animals, Newborn; Astrocytes; Cells, Cultured; DNA-Binding Proteins; Early Growth Response Protein 1; Endothelins; Fibroblast Growth Factor 2; Flavonoids; Gene Expression Regulation; Glioma; GTP-Binding Proteins; Immediate-Early Proteins; Lysophospholipids; Mitogen-Activated Protein Kinases; Naphthalenes; Pertussis Toxin; Platelet-Derived Growth Factor; Protein Kinase C; Rats; RNA, Messenger; Sphingosine; Tetradecanoylphorbol Acetate; Transcription Factors; Tumor Cells, Cultured; Virulence Factors, Bordetella | 1999 |
The effect of calphostin C, a potent photodependent protein kinase C inhibitor, on the proliferation of glioma cells in vitro.
Recent studies have suggested that the proliferation of malignant gliomas may result from activation of protein kinase C (PKC)-mediated pathways; conversely, inhibition of PKC may provide a strategy for blocking tumor growth. In the current studies, we examined the effect of a novel PKC inhibitor, calphostin C, which is a selective, highly potent, photo-activatable inhibitor of the PKC regulatory domain, on the proliferation and viability of three established and three low-passage malignant glioma cell lines, four low-passage low-grade glioma cell lines, and in adult human and neonatal rat non-neoplastic astrocyte cell lines in vitro. Under light-treated conditions, calphostin C consistently inhibited cell proliferation in each of the tumor cell lines and in the neonatal rat astrocyte cell line with a 50% effective concentration of 30 to 50 ng/ml (40 to 60 nm), which was comparable to the previously reported median inhibitory concentration (IC50) for PKC inhibition by calphostin C. Complete elimination of proliferation was achieved at concentrations of 50 to 100 ng/ml (60 to 125 nM). Cell viability decreased sharply with calphostin C concentrations of 100 to 300 ng/ml (125 to 380 nM). In contrast, under light-shielded conditions, calphostin C had a comparatively modest effect on cell proliferation and viability, with a median effective concentration of approximately 300 ng/ml. No significant inhibition of proliferation was noted in the non-neoplastic adult astrocyte cell line under either light-treated or light-shielded conditions. These findings provide further evidence that PKC may play an essential role in mediating the proliferation of both benign and malignant glioma cells in vitro and may also contribute to the proliferation of non-neoplastic immature astrocytes. Light-sensitive inhibition of proliferation and viability by agents such as calphostin C may provide a novel strategy for applying photodynamic therapy to the treatment of neoplastic glial cells. Topics: Animals; Antibiotics, Antineoplastic; Brain Neoplasms; Cell Division; Glioma; Humans; Naphthalenes; Protein Kinase C; Rats; Tumor Cells, Cultured | 1997 |
Effects of interferon and PKC modulators on human glioma protein kinase C, cell proliferation, and cell cycle.
The in-vitro effects of human interferon alpha-2b (HuIFN alpha-2b), protein kinase C (PKC) agonist [TPA (12-0-tetra-decanoyl-phorbol-13-acetate)] and PKC inhibitor (calphostin C) on human glioma (U-373 MG) PKC activity, cell proliferation and cell cycle were compared. HuIFN alpha-2b and TPA increased PKC activity, elevated the number of cells in DNA synthesis (S) phase and decreased cell proliferation by similar magnitudes. Calphostin C inhibited PKC activity, increased the number of cells in S phase and produced strong cytotoxic effects (IC50 150 nM). Higher concentrations of calphostin C with or without serum induced an additional block in gap2 and mitosis. We conclude that HuIFN alpha-2b's mode of action may be directly or indirectly affecting PKC. The response produced by HuIFN alpha-2b is similar to TPA (potent PKC activation and S phase arrest). Topics: Antineoplastic Agents; Cell Cycle; Cell Division; Drug Screening Assays, Antitumor; Enzyme Activation; Enzyme Inhibitors; Glioma; Humans; Interferon alpha-2; Interferon-alpha; Naphthalenes; Protein Kinase C; Recombinant Proteins; Tetradecanoylphorbol Acetate; Tumor Cells, Cultured | 1997 |
Hypericin-induced apoptosis of human malignant glioma cells is light-dependent, independent of bcl-2 expression, and does not require wild-type p53.
Hypericin and tamoxifen are experimental agents for the adjuvant chemotherapy of malignant glioma. We report that hypericin and tamoxifen induce apoptosis of 7 human malignant glioma cell lines in a concentration- and time-dependent manner. Illumination is essential for the cytotoxicity of hypericin but not tamoxifen. Apoptosis is unaffected by inhibitors of RNA and protein synthesis or free radical scavengers, does not require wild-type p53 activity, and occurs in glioma cells expressing high levels of bcl-2. There is no correlation between hypericin and tamoxifen-induced cytotoxicity and inhibition of protein kinase C (PKC). Ectopic expression of a murine bcl-2 transgene provides modest protection from tamoxifen but does not affect hypericin toxicity. Hypericin and tamoxifen do not modulate glioma cell killing induced by tumor necrosis factor-alpha (TNF-alpha) or CD95 ligand. Both drugs augment the acute cytotoxicity of various cancer chemotherapy drugs but fail to shift their EC50 values in modified colony formation assays. These data do not provide further supportive evidence how to enhance the limited efficacy of tamoxifen treatment for human malignant glioma. However, hypericin is a promising agent for the treatment of malignant glioma if local photodynamic activation of hypericin in the glioma tissue can be achieved. Topics: Anthracenes; Antibiotics, Antineoplastic; Antineoplastic Agents; Antineoplastic Agents, Hormonal; Apoptosis; bcl-2-Associated X Protein; Cell Division; Drug Resistance; fas Receptor; Glioma; Humans; Light; Naphthalenes; Perylene; Protein Kinase C; Protein Synthesis Inhibitors; Proto-Oncogene Proteins; Proto-Oncogene Proteins c-bcl-2; RNA; Tamoxifen; Tumor Cells, Cultured; Tumor Suppressor Protein p53 | 1997 |
Glioma invasion in vitro: regulation by matrix metalloprotease-2 and protein kinase C.
A hallmark of invasive tumors is their ability to effect degradation of the surrounding extracellular matrix (ECM) by the local production of proteolytic enzymes, such as the matrix metalloproteases (MMPs). In this paper, we demonstrate that the invasion of human gliomas is mediated by a 72 kDa MMP, referred to as MMP-2, and provide further evidence that the activity of MMP-2 is regulated by protein kinase C (PKC). The invasiveness of five human glioma cell lines (A172, U87, U118, U251, U563) was assessed in an in vitro invasion assay and was found to correlate with the level of MMP-2 activity (r2 = 0.95); in contrast, the activity of this 72 kDa metalloprotease was barely detectable in non-invasive control glial cells (non-transformed human astrocytes and oligodendrocytes). Treatment with 1,10-phenanthroline, a metalloprotease inhibitor, or with a synthetic dipeptide, containing a blocking sequence (ala-phe) specific for MMPs, resulted in a > 90% reduction in glioma invasion. Furthermore, this MMP-2 activity could be inhibited by the treatment of tumor cells with calphostin C, a specific inhibitor of PKC. Glioma cell lines treated with calphostin C demonstrated a dose-dependent decrease (IC50 = 30 nM) in tumor invasiveness with a concomitant reduction in the activity of the MMP-2. Conversely, treatment of non-invasive control astrocytes with a PKC activator (phorbol ester) led to a corresponding increase in their invasiveness and metalloprotease activity. These findings support the postulate that MMP-2 activity constitutes an important effector of human glioma invasion and that the regulation of this proteolytic activity can be modulated by PKC. Topics: Cell Division; Collagen; Collagenases; Drug Combinations; Enzyme Inhibitors; Extracellular Matrix Proteins; Gelatinases; Glioma; Humans; Laminin; Matrix Metalloproteinase 2; Matrix Metalloproteinase 9; Metalloendopeptidases; Naphthalenes; Neoplasm Invasiveness; Protein Kinase C; Proteoglycans; Tumor Cells, Cultured | 1996 |
Apoptosis of human glioma cells in response to calphostin C, a specific protein kinase C inhibitor.
Calphostin C acts at the regulatory domain as a highly selective inhibitor of protein kinase C (PKC), and staurosporine acts at the catalytic domain as a nonspecific PKC inhibitor. The authors investigated the capacity of calphostin C and staurosporine to promote apoptotic fragmentation of DNA in four human glioma cell lines. The exposure of glioma cell lines to 100 nM calphostin C for 2 to 8 hours induced a decrease in particulate PKC activities and exposure for 16 to 24 hours produced a concentration-dependent increase in internucleosomal DNA cleavage on agarose gel electrophoresis. In addition, the human glioma cells showed the classic morphological features of apoptosis: cell shrinkage, nuclear condensation, and the formation of apoptotic bodies. A 24-hour exposure to staurosporine failed to induce internucleosomal DNA fragmentation at concentrations generally used to achieve maximum inhibition of enzyme activity (50 nM) but promoted fragmentation at considerably higher concentration (more than 200 nM). Deoxyribonucleic acid fragments obtained from cells exposed to 100 nM calphostin C for 16 to 24 hours possessed predominantly 5'-phosphate termini, consistent with the action of a Ca++/Mg(++)-dependent endonuclease. Northern and Western blot analyses revealed that the exposure to 100 nM calphostin C for 4 hours failed to alter bcl-2 transcript and protein, but exposure for more than 8 hours decreased the amount of bcl-2 transcript and protein. Together, these observations suggest that calphostin C is capable of inducing apoptotic DNA fragmentation and cell death in a highly concentration dependent manner in human glioma cells and that the apoptosis is closely associated with the decrease in transcription and translation of bcl-2. Topics: Alkaloids; Antibiotics, Antineoplastic; Apoptosis; Autoradiography; Blotting, Northern; Blotting, Western; Cell Count; Cell Line; Electrophoresis, Agar Gel; Enzyme Inhibitors; Glioma; Humans; Naphthalenes; Protein Kinase C; Staurosporine; Thymidine; Tumor Cells, Cultured | 1995 |
Phosphorylation of Gi alpha 2 attenuates inhibitory adenylyl cyclase in neuroblastoma/glioma hybrid (NG-108-15) cells.
Cross-regulation from the stimulatory phospholipase C to the adenylyl cyclase pathways was explored in neuroblastoma-glioma NG-108-15 cells in culture. Activation of protein kinase C by phorbol myristic acid resulted in a markedly attenuated activation of the inhibitory adenylyl cyclase response to delta-opiate agonists and epinephrine but not to the muscarinic agonist carbachol. The ability of okadaic acid to mimic the effects of phorbol myristic acid on the inhibitory response suggested a role for protein phosphorylation. Adenylyl cyclase activity from cells in which protein kinase C had been activated demonstrated a loss in the inhibitory adenylyl cyclase response at the level of the G-protein. Activation of protein kinase C prompted a 2-4-fold increase in phosphorylation of G1 alpha 2 in cells metabolically labeled with [32P]orthophosphate. The phosphate content of Gi alpha 2 was determined to be approximately 0.5 mol/mol subunit in the unstimulated cells and approximately 1.5 mol/mol subunit for cells in which protein kinase C was activated. The effects of okadaic acid, 4-alpha-phorbol, and calphostin C on inhibition of adenylyl cyclase in cells treated with phorbol myristic acid correlate with the effects of these agents on phosphorylation of Gi alpha 2. The time courses for attenuation of inhibitory adenylyl cyclase and that for phosphorylation of Gi alpha 2 were similar in cells challenged with phorbol myristic acid. These data argue for cross-regulation from the stimulatory protein kinase C to inhibitory adenylyl cyclase pathways at the level of Gi alpha 2 via protein phosphorylation. Topics: Adenylyl Cyclases; Enkephalin, Leucine-2-Alanine; Enzyme Activation; Ethers, Cyclic; Glioma; GTP-Binding Proteins; Hybrid Cells; Naphthalenes; Neuroblastoma; Okadaic Acid; Phorbols; Phosphorylation; Polycyclic Compounds; Protein Kinase C; Tetradecanoylphorbol Acetate; Tumor Cells, Cultured | 1994 |