ucn-1028-c and Coronary-Vasospasm

ucn-1028-c has been researched along with Coronary-Vasospasm* in 1 studies

Other Studies

1 other study(ies) available for ucn-1028-c and Coronary-Vasospasm

ArticleYear
Endothelin-1 promotes Ca2+ antagonist-insensitive coronary smooth muscle contraction via activation of epsilon-protein kinase C.
    Hypertension (Dallas, Tex. : 1979), 2004, Volume: 43, Issue:4

    Certain forms of coronary artery disease do not respond to treatment with Ca2+ channel blockers, and a role for endothelin-1 (ET-1) in Ca2+ antagonist-insensitive forms of coronary vasospasm has been suggested; however, the signaling mechanisms involved are unclear. We tested the hypothesis that a component of ET-1-induced coronary smooth muscle contraction is Ca2+ antagonist-insensitive and involves activation of protein kinase C (PKC). Cell contraction was measured in smooth muscle cells isolated from porcine coronary artery, [Ca2+]i was measured in fura-2 loaded cells, and the cytosolic and particulate fractions were examined for PKC activity and reactivity with isoform-specific PKC antibodies using Western blot analysis. In Hank's solution (1 mmol/L Ca2+), ET-1 (10(-7) mol/L) caused a transient increase in [Ca2+]i (236+/-14 nmol/L) followed by a maintained increase in [Ca2+]i (184+/-8 nmol/L) and 35% cell contraction. The Ca2+ channel blockers verapamil and diltiazem (10(-6) mol/L) abolished the maintained ET-1-induced [Ca2+]i, but only partially inhibited ET-1-induced cell contraction to 18%. The verapamil-insensitive component of ET-1 contraction was inhibited by the PKC inhibitors calphostin C and epsilon-PKCV1-2. ET-1 caused translocation of Ca2+-dependent alpha-PKC and Ca2+-independent epsilon-PKC from the cytosolic to the particulate fraction that was inhibited by calphostin C. Verapamil abolished ET-1-induced translocation of alpha-PKC, but not that of epsilon-PKC. Phorbol 12-myristate 13-acetate (10(-6) mol/L), a direct activator of PKC, caused 22% cell contraction, with no increase in [Ca2+]i, and translocation of epsilon-PKC that was inhibited by calphostin C, but not by verapamil. KCl (51 mmol/L), which stimulates Ca2+ influx, caused 35% cell contraction and increase in [Ca2+]i (291+/-11 nmol/L) that were inhibited by verapamil, but not by calphostin C, and did not cause translocation of alpha- or epsilon-PKC. In Ca2+-free (2 mmol/L EGTA) Hank's solution, ET-1 caused 15% cell contraction, with no increase in [Ca2+]i, and translocation of epsilon-PKC that were inhibited by epsilon-PKC V1-2 inhibitory peptide. Thus, a significant component of ET-1-induced contraction of coronary smooth muscle is Ca2+ antagonist-insensitive and involves activation and translocation of Ca2+-independent epsilon-PKC, and may represent a signaling mechanism of Ca2+ antagonist-resistant forms of coronary vasospasm.

    Topics: Animals; Calcium; Calcium Channel Blockers; Coronary Vasospasm; Coronary Vessels; Diltiazem; Disease Models, Animal; Drug Resistance; Endothelin-1; Enzyme Activation; Enzyme Inhibitors; Male; Muscle, Smooth, Vascular; Naphthalenes; Peptide Fragments; Protein Kinase C; Protein Kinase C-epsilon; Protein Transport; Signal Transduction; Swine; Tetradecanoylphorbol Acetate; Vasoconstriction; Verapamil

2004